
1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 1/17

ECE 4803: Fundamentamentals of Machine Learning
(FunML)

Spring 2022

Homework Assignment # 1

Due: Friday, 28 January 2022 @8PM

Georgia Institute of Technology

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython  notebook. It is designed
to be used with Google Colab , but you may use other tools (e.g., Jupyter Lab) as well.
Make sure that you execute all cells in a way so their output is printed beneath the
corresponding cell. Thus, after successfully executing all cells properly, the resulting notebook
has all the questions and your answers.
Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas
under Assignments
Make sure you delete any scratch cells before you export this document as a PDF. Do notdelete
change the order of the questions and do not remove any part of the questions. Edit at the
indicated places only.
Rename the PDF according to the format:
LastName_FirstName_ECE_4803_sp22_assignment_#.pdf
It is encouraged for you to discuss homework problems amongst each other, but any copying
is strictly prohibited and will be subject to Georgia Tech Honor Code.
Late homework is not accepted unless arranged otherwise and in advance.
Comment on your codes.
Refer to the tutorial and the supplementary/reading materials that are posted on Canvas  for
the �rst lecture (10-Jan) to help you with this assignment.
IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and
the part of the problem you are working on. For example, start your solution for Part (c) of
Problem 2 by having the �rst line as: 
Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 2/17

This homework assignment is designed with the following objectives:

Familiarizing students with Markdown and LaTeX in Ipython Notebooks
Introduction to the use of Numpy for Matrix and vector operations and for setting up arrays
Loading and visualizing data
Perform simple data analysis

Assignment Objectives:

Here is a video summarizes how to export Ipythin Notebook into PDF. 

[Method1: Print to PDF] 
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose
[Save as PDF] to export this Ipython Notebook to PDF for submission.  
Note: Sometimes �gures or texts are splited into different pages. Try to tweak the layout by
adding empty lines to avoid this effect as much as you can.

[Method2: colab-pdf script] 
The author of that video provided an alternative method that can generate better layout PDF.
However, it only works for Ipythin Notebook without embedded images. 
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run
the �srt cell, it will ask for google drive permission. Executing the second cell will generate the
PDF �le in your google drive home directory. Make sure you use the correct path and �le
name.

## this will link colab with your google drive 

from google.colab import drive 

drive.mount('/content/drive')

Note: Since we have embedded images in HW1, it's recommended to generate PDF using the �rst
method. Also, Georgia Tech provides a student discount for Adobe Acrobat subscription. Further

%%capture 

!wget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py 

from colab_pdf import colab_pdf 

colab_pdf('LastName_FirstName_ECE_4803_sp22_assignment_#.ipynb') ## change path and 

Guide for Exporting Ipython Notebook to PDF:

https://www.youtube.com/watch?v=yXzw9Dd_Na0
https://github.com/brpy/colab-pdf


1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 3/17

information can be found here.

Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using
an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or
HTML). Jupyter notebooks use Markdown cells for inserting any content that is not code. For
problem1, we are going to have you create a level 3 heading and a blockquote containing a list that
has in turn additional sublists, like shown in the image below. Your task is to recreate this list with a
heading within a single markdown cell and execute it. 

Problem 1: Markdown Basics (10pts)

Solution to Problem 1

item 1

subitem 1
subitem 2
subitem 3

item 2

subitem 1
subitem 2
subitem 3

Level 3 Heading

https://faq.oit.gatech.edu/content/adobe-licensing
https://www.markdownguide.org/getting-started/


1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 4/17

Markdown enables the creation of code blocks within markdown cells for a better differentiation of
regular text from code. Write and execute the markdown syntax required to create the block of
Python  code within a code block as depicted in the image below:

Problem 2: Creating Codeblocks (10pts)

Solution to Problem 2

import numpy as np 

import matplotlib.pyplot as plt 

import sklearn 

plt.imshow(img) #plotting the image

LaTeX is widely used in academia for the communication and publication of scienti�c documents in
many �elds, including engineering, mathematics, statistics, computer science, physics, economics,
linguistics, quantitative psychology, philosophy, and political science. It is especially useful when it
comes to typesetting mathematical expressions, tables, and matrices. The image below shows
various mathematical expressions typed out using LaTeX  in markdown. Your task is to recreate
them in the cell underneath. 

Problem 3: LaTeX in Markdown (10pts)

Solution to Problem 3

https://www.latex-project.org/


1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 5/17

, and . Then  

 

A = [ ]4

3

5

4
x = [ ]2

4
y = Ax = [ ]28

22
σ(x) = 1

1+e−θTx

P(θ| ) =x1
P( |θ)×P(θ)x1

P( )x1

This exercise introduces a few basic linear algebra concepts that you can carry out with Python
and the standard library numpy . We will go through some basic matrix operations, analyze inverse
problem using several matrix properties and decompositions and calculate matrix approximations.

Problem 4: Introduction to Linear Algebra with Python  and Numpy  (25pts)

Given , ,  and . Use numpy  to

calculate the following: 

i. Create matrix ,  and vector  and  using numpy  array.
ii. Calculate  and , using  and  from i.

iii. Calculate , which is the Hadamard product (also known as element-wise
multiplication) and matrix product  and .

iv. Calculate the inverse of , i.e., .

Problem 4 (a) Basic Numpy operations

A = [ ]1

−2

1

−1

2

1
B = [ ]2

0

−3

−1

1

2
=v1

⎡

⎣
⎢

2

1

0

⎤

⎦
⎥ =v2

⎡

⎣
⎢

−5

3

2

⎤

⎦
⎥

A B v1 v2

= +v3 v1 v2 = −v4 v1 v2 v1 v2

C = A ⊙ B

D = Av1 E = AAT

E F = E−1

Solution to Problem 4 Part (a)

import numpy as np 

## Problem 4(a) question i 
A = np.array([[1, 1, 2], [-2, -1, 1]]) 
B = np.array([[2, -3, 1], [0, -1, 2]]) 

v1 = np.array([[2], [1], [0]]) 
v2 = np.array([[-5], [3], [2]]) 

## Problem 4(a) question ii 
v3 = np.add(v1, v2) 
v4 = np.subtract(v1, v2) 

## Problem 4(a) question iii 



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 6/17

C = np.multiply(A, B) 
D = np.matmul(A, v1) 
E = np.matmul(A.transpose(), A) 

## Problem 4(a) question iv 
F = np.linalg.inv(E) 

#-----------------Don't change anything below------------------------# 
print('[Question i]') 
print('A: \n',A) 
print('B: \n',B) 
print('v1: \n', v1) 
print('v2: \n', v2) 

print('[Question ii]') 
print('v3=v1+v2: \n', v3) 
print('v4=v1-v2: \n', v4) 

print('[Question iii]') 
print('C = Hadamard Product of A and B: \n',C) 
print('D = Matrix Product of A and v1: \n',D) 
print('E = Matrix Product of A^T and A: \n',E) 

print('[Question iv]') 
print('F = E^-1: \n',F)

[Question i] 
A:  
 [[ 1  1  2] 
 [-2 -1  1]] 
B:  
 [[ 2 -3  1] 
 [ 0 -1  2]] 
v1:  
 [[2] 
 [1] 
 [0]] 
v2:  
 [[-5] 
 [ 3] 
 [ 2]] 
[Question ii] 
v3=v1+v2:  
 [[-3] 
 [ 4] 
 [ 2]] 
v4=v1-v2:  
 [[ 7] 
 [-2] 
 [-2]] 
[Question iii] 
C = Hadamard Product of A and B: 



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 7/17

 [[ 2 -3  2] 
 [ 0  1  2]] 
D = Matrix Product of A and v1:  
 [[ 3] 
 [-5]] 
E = Matrix Product of A^T and A: 
 [[5 3 0] 
 [3 2 1] 
 [0 1 5]] 
[Question iv] 
F = E^-1:  
 [[-1.35107989e+15  2.25179981e+15 -4.50359963e+14] 
 [ 2.25179981e+15 -3.75299969e+15  7.50599938e+14] 
 [-4.50359963e+14  7.50599938e+14 -1.50119988e+14]] 

Inverse problem is a very common engineering problem across different �elds of study, e.g. medical
image applications and parameter estimation. Its simplest form (without noise) is composed of a
measurement , a system matrix , and the system parameter . We also know the forward part 

. Our task is to �nd  using  and . There are several algorithms focusing on inverse
problems such as least square (we will learn this in later lectures), compressed sensing and deep
learning approach. Part of this homework is to get you try to seek assistance by serching through
numpy  and other resources.

Suppose that  and .

i. Are the rows in  linearly independent? Calculate the inverse of  and the eigen
decomposition  of  using numpy .

ii. Using the eigen decomposition of , calculate the solution  for .
iii. Now suppose we have a different system matrix  and measuerment : 

 and .

What is the rank of ? Calculate the SVD decomposition  of  using numpy .

iv. Since  has more rows than columns, we need Moore-Penrose Pseudo-inverse 
 to calculate the solution . Calculate  using ,  and .

Problem 4 (b) Linear inverse problem y = Ax

y A x

y = Ax x y A

A =

⎡

⎣

⎢⎢⎢

1

0

0

1

−2

−1

1

0

0

0

−2

0

2

1

1

1

⎤

⎦

⎥⎥⎥ =y1

⎡

⎣

⎢⎢⎢

3

1

−1

2

⎤

⎦

⎥⎥⎥

A A

VAΛAV −1
A

A

A x = Axy1

B y2

B =

⎡

⎣

⎢⎢⎢⎢⎢⎢

2

1

0

2

3

−3

0

1

2

3

1

0

−3

−1

1

−4

2

5

1

−2

⎤

⎦

⎥⎥⎥⎥⎥⎥
=y2

⎡

⎣

⎢⎢⎢⎢⎢⎢

−1

3

2

2

2

⎤

⎦

⎥⎥⎥⎥⎥⎥

B UBDBV T
B B

B

= ( BB† BT )−1BT x x UB DB VB



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 8/17

Solution to Problem 4 Part (b)  
i. A is linearly independent since it has an inverse matrix. 
iii. Rank of B = 4

y1 = np.transpose(np.array([[3, 1, -1, 2]])) 
A = np.array([[1, -2, 0, 2], 
              [0, -1, 0, 1], 
              [0, 1, -2, 1], 
              [1, 0, 0, 1]]) 

y2 = np.transpose(np.array([[-1, 3, 2, 2, 2]])) 
B = np.array([[2, -3, 1, -4], 
              [1, 0, 0, 2], 
              [0, 1, -3, 5], 
              [2, 2, -1, 1], 
              [3, 3, 1, -2]]) 
#-----------------Don't change anything above------------------------# 

## Problem 4(b) question i 
A_inverse = np.linalg.inv(A) 
Lamda_A, V_A = np.linalg.eig(A) 

## Problem 4(b) question ii 
x1 = np.matmul( np.matmul( np.matmul(V_A , np.linalg.inv(np.diag(Lamda_A))) , np.linalg.inv(V_

## Problem 4(b) question iii 
B_rank = np.linalg.matrix_rank(B)
U_B, D_B, V_B_transpose = np.linalg.svd(B) 

## Problem 4(b) question iv 
x2 = np.matmul( np.matmul( np.matmul( np.transpose(V_B_transpose) , np.concatenate((np.linalg
## Formula I used: B_pseudo_inv = V_B * [D_B_inv, [0]] * U_B_transpose 

#-----------------Don't change anything below------------------------# 
print('inverse of A: \n', A_inverse) 
print('lambda of A: \n', Lamda_A) 
print('V_A(eigenvectors): \n', V_A) 

print('x1: \n', x1) 

print('rank of B: ', B_rank) 
print('U_B:, \n', U_B) 
print('D_B:, \n', D_B) 
print('V_B^T:, \n', V_B_transpose) 

print('x2: \n', x2) 



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 9/17

inverse of A:  
 [[ 1.  -2.   0.   0. ] 
 [-1.   1.   0.   1. ] 
 [-1.   1.5 -0.5  1. ] 
 [-1.   2.   0.   1. ]] 
lambda of A:  
 [-2.         -1.4811943   0.31110782  2.17008649] 
V_A(eigenvectors):  
 [[ 0.          0.6243338   0.42414154  0.73014725] 
 [ 0.          0.52292041 -0.46959249  0.19684364] 
 [ 1.          0.52292041 -0.46959249  0.19684364] 
 [ 0.         -0.25162632 -0.61568639  0.62401135]] 
x1:  
 [[ 1.00000000e+00] 
 [-1.77635684e-15] 
 [ 1.00000000e+00] 
 [ 1.00000000e+00]] 
rank of B:  4 
U_B:,  
 [[-0.61637039  0.08678363  0.75940516  0.1606979   0.10018049] 
 [ 0.19248146 -0.08968427  0.36573823 -0.90417375 -0.06010829] 
 [ 0.70886224 -0.02864004  0.45517644  0.30855955  0.44079414] 
 [ 0.18257136 -0.51213591  0.25558792  0.24366463 -0.7613717 ] 
 [-0.21730267 -0.84930671 -0.13049356 -0.0454376   0.46083024]] 
D_B:,  
 [8.12182025 5.23174328 2.85295385 1.23513257] 
V_B^T:,  
 [[-0.16339005  0.27964275 -0.38696143  0.86334494] 
 [-0.66675843 -0.73802989 -0.03143638  0.09877668] 
 [ 0.7025153  -0.59704571 -0.34778188  0.17045949] 
 [-0.18764098  0.14369496 -0.85341688 -0.46456673]] 
x2:  
 [[1.00000000e+00] 
 [5.55111512e-16] 
 [1.00000000e+00] 
 [1.00000000e+00]] 

Having seen some examples of matrix vector products, we now move onto the subject of vector
norms, which quantify vectors, in magnitude. There are a number of vector norms.  and  are
among the most common and frequently used norms. For a vector , we
have:

  ( -2 norm of )

  ( -1 norm of )

You can use the numpy  function numpy.linalg.norm  to compute vector and matrix norms of
different kinds by passing the appropriate arguments as shown below:

Problem 5: Vector Norms (15pts)

L2 L1

v = [ , , ⋯ ,v1 v2 vn ]T

||v| =|2 + + ⋯ +v2
1 v2

2 v2
n

− −−−−−−−−−−−−−
√ L v

||v| = | | + | | + ⋯ + | ||1 v1 v2 vn L v



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 10/17

from numpy.linalg import norm 

l2 = norm(v,2)  # computes l2 norm of v 

l1 = norm(v,1)  # computes l1 norm of v

Your tasks are as follows:

a. Write your own function to compute the  norm. Complete the function de�nition given
below by using the norm de�nition above. In this part, do not use the numpy   function and
any for loop.

b. Write your own function to compute the  norm. Complete the function de�nition given
below by using the norm de�nition above. In this part, do not use the numpy   function and
any for loop.

c. Compare your answers on any vector of your own to the ones obtained by numpy's norm
function

(Hint: Think about what is special about .)

L1

L1

L2

L2

A

Solution to Problem 5

from numpy.linalg import norm 
import numpy as np 

def l2(v): 
    '''Function computes l2 norm for given vector v''' 
     
    l2_norm =  np.sqrt(np.sum(np.square(v))) 
     
    return l2_norm 

def l1(v): 
    '''Function computes l1 norm for given vector v''' 
     
    l1_norm =  np.sum(np.absolute(v)) 
     
    return l1_norm 

v =  np.array([4, 5, 6, 7]) # define any vector here 

#----------------------------------Don't change below!--------------------------------------# 
print("L2 norm with \'norm\': %.4f" %norm(v,2),' | L2 norm with function: %.4f' %l2(v)) 
print('L1 norm with \'norm\': %.3f' %norm(v,1),' | L2 norm with function: %.3f'%l1(v)) 



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 11/17

L2 norm with 'norm': 11.2250  | L2 norm with function: 11.2250 
L1 norm with 'norm': 22.000  | L2 norm with function: 22.000 

5. c. My answer and numpy's norm looks the same.

In this problem, we will test some of the basic concepts in probability theory. Please answer these
questions in the text cell with Latex in Markdown. 
Note: This question is optional and it's not necessary to turn it in, but it may serve as a good
excercise for you to review some of fundamentals of probability theory.  

Problem 6 (a) 
Suppose that  and  are two independent random variables. Show that they are uncorrelated in
the discrete case. Recall that the two random variables  and  are independent when 

. They are uncorrelated when . 

Problem 6 (b) 
Let  and  be two independent random variabales, and  and 

. Assume , show . 

Problem 6 (c) 
 is a uniform random variable that  and given an event 

i. What is the conditional PDF, 
ii. What is the conditional expected value, 

iii. What is the conditional variance, 

Problem 6: Probability theory review (Optional)

X Y

X Y

P(X ∩ Y ) = P(X)P(Y ) E[(X − E(X))(Y − E[Y ])] = 0

X Y X ∼ N( , )μX σ2
X

Y ∼ N( , )μY σ2
Y Z = X + Y Z ∼ N( + , + )μX μY σ2

X σ2
Y

X X ∼ Unif(0, 10) A = {1 ≤ X ≤ 5}

(x)fX|A

E[X|A]

V ar[X|A]

[Put your answer in this cell]

Problem 7 (a)

For the purposes of this section, we will have you load and visualize the Iris dataset and its various
features. The Iris �ower data set or Fisher's Iris data set is a multivariate data set introduced by the
British statistician, eugenicist, and biologist Ronald Fisher in his 1936 paper The use of multiple

Problem 7: Loading and Visualizing Datasets (25pts)

https://en.wikipedia.org/wiki/Iris_flower_data_set


1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 12/17

measurements in taxonomic problems as an example of linear discriminant analysis. You may
import the dataset using the popular sklearn library by running the following snippet of code:

from sklearn.datasets import load_iris 

iris = load_iris()

(Note: You may have to install sklearn via the pip install sklearn  command.)

Explore various features of the dataset, and then answer the following questions:

i. How many feature attributes does the dataset have?
ii. What are the feature names for the attributes?

iii. How many different target classes exist in the dataset?
iv. What are the class names?

The names of the various features and targets should printed in an output cell once you execute it.
(Hint: It may be helpful to refer to the documentation for the load_iris  function.)

Solution to Problem 7 Part (a)

i. 4 features 
ii. 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)' 
iii. 3 classes 
iV. 'setosa', 'versicolor', 'virginica'

# pip install sklearn  (keep commented if sklearn already installed)
from sklearn.datasets import load_iris

iris = load_iris() 

#-----------Write Code below-----------------#

## question i
print('Number of feature is:') 
n_samples, n_features = iris.data.shape
print(n_features)

## question ii
print('Feature names are:')
print(iris.feature_names)

## qustion iii
( )



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 13/17

print('Number of target classes is:')
print(iris.target_names.shape[0])

## question iv
print('Class names are:')
print(iris.target_names)

Number of feature is: 
4 
Feature names are: 
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] 
Number of target classes is: 
3 
Class names are: 
['setosa' 'versicolor' 'virginica'] 

We are now going to visualize the data. Your analysis of the Iris dataset above should have revealed
that it has more than two features. For ease of use, however, we are only going to use two of these
features and plot them against each other in a scatter plot for each training example in the dataset.
We are going to use the standard plotting library, Matplotlib, for this purpose. Once again, you might
have to install the matplotlib library via a pip install matplotlib  command. Fill in the template
code provide below in the places indicated to generate 2D scatter plots for various feature
combinations as shown in the image below.

Problem 7 (b)



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 14/17

Solution to Problem 7 Part (b)

import matplotlib.pyplot as plt
import numpy as np
import itertools

def combinations(iterable, r=2):
    """Function generates unique pairwise permutations for the given iterable"""
    pool = tuple(iterable)
    n = len(pool)
    if r > n:
        return
    indices = list(range(r))
    yield tuple(pool[i] for i in indices)
    while True:
        for i in reversed(range(r)):
            if indices[i] != i + n - r:
                break
        else:
            return
        indices[i] += 1
        for j in range(i+1, r):
            indices[j] = indices[j-1] + 1
        yield tuple(pool[i] for i in indices)
        



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 15/17

feature_names = iris.feature_names  # write code to extract list of feature names
class_names = iris.target_names # extract list of class names

features = iris.data # extract features as an N x D numpy array, where N is the number of dat
labels = iris.target # extract labels as an N dimensional numpy array, where N is the number 

# Extract total number of crossplots possible with the given feature sizes
total_plots = len([*combinations(list(range(len(feature_names))), 2)])

# generate array of plots of the desired shape. play around with this to get the appropriate 
fig, axes = plt.subplots(2,3, figsize=(20,12))

for ax, feature_combination in zip(axes.flatten(), combinations(list(range(len(feature_names)
    
    feature_1 = feature_combination[0]
    feature_2 = feature_combination[1]
    
    for class_num in np.unique(labels):
        ax.scatter(features[:,feature_1][labels==class_num], features[:,feature_2][labels==cl

    ax.set_xlabel(feature_names[feature_1])
    ax.set_ylabel(feature_names[feature_2])
    ax.legend()

plt.show()



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 16/17

Do all feature crossplots result in well-distinguished classes? Based off your plots, which feature
combinations result in the most poorly-distinuished classes? Which two features give the most
well-distinuished classes?

Problem 7 (c)

Solution to Problem 7 Part (c)

No, not all crossplots result in well-distinguished classes.
The combination result in the most poorly-distinguished is 'sepal length (cm)' and 'sepal width
(cm)'.
The combination result in the most well-distinguished is 'petal length (cm)' and 'petal width
(cm)'.



1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHqeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 17/17

 0s completed at 10:31 AM


