1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

v Georgia Institute of Technology

ECE 4803: Fundamentamentals of Machine Learning
(FunML)

Spring 2022
Homework Assignment # 1

Due: Friday, 28 January 2022 @8PM

Please read the following instructions carefully.

e The entire homework assignment is to be completed on this ipython notebook. It is designed
to be used with Google Colab, but you may use other tools (e.g., Jupyter Lab) as well.

* Make sure that you execute all cells in a way so their output is printed beneath the
corresponding cell. Thus, after successfully executing all cells properly, the resulting notebook
has all the questions and your answers.

e Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas
under Assignments

e Make sure you delete any scratch cells before you export this document as a PDF. Do not
change the order of the questions and do not remove any part of the questions. Edit at the
indicated places only.

¢ Rename the PDF according to the format:
LastName_FirstName_ECE_4803_sp22_assignment_#.pdf

 |tis encouraged for you to discuss homework problems amongst each other, but any copying
is strictly prohibited and will be subject to Georgia Tech Honor Code.

* Late homework is not accepted unless arranged otherwise and in advance.

e Comment on your codes.

e Refer to the tutorial and the supplementary/reading materials that are posted on canvas for
the first lecture (10-Jan) to help you with this assignment.

e IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and
the part of the problem you are working on. For example, start your solution for Part (c) of
Problem 2 by having the first line as:

Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 1117

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

Assignment Objectives:

This homework assignment is designed with the following objectives:

e Familiarizing students with Markdown and LaTeX in Ipython Notebooks

* Introduction to the use of Numpy for Matrix and vector operations and for setting up arrays

e Loading and visualizing data
e Perform simple data analysis

~ Guide for Exporting Ipython Notebook to PDF:

Here is a video summarizes how to export Ipythin Notebook into PDF.

e [Method1: Print to PDF]

After you run every cell and get their outputs, you can use [File] -> [Print] and then choose

[Save as PDF] to export this Ipython Notebook to PDF for submission.

Note: Sometimes figures or texts are splited into different pages. Try to tweak the layout by

adding empty lines to avoid this effect as much as you can.

e [Method2: colab-pdf script]

The author of that video provided an alternative method that can generate better layout PDF.

However, it only works for Ipythin Notebook without embedded images.

How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run
the fisrt cell, it will ask for google drive permission. Executing the second cell will generate the
PDF file in your google drive home directory. Make sure you use the correct path and file
name.

this will link colab with your google drive
from google.colab import drive

drive.mount('/content/drive")

%%kcapture

lwget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py
from colab_pdf import colab_pdf
colab_pdf('LastName_FirstName_ ECE_4803 sp22 assignment_#.ipynb') ## change path and

4

Note: Since we have embedded images in HW1, it's recommended to generate PDF using the first

method. Also, Georgia Tech provides a student discount for Adobe Acrobat subscription. Further

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true

2017

https://www.youtube.com/watch?v=yXzw9Dd_Na0
https://github.com/brpy/colab-pdf

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

information can be found here.

Problem 1: Markdown Basics (10pts)

Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you to write using
an easy-to-read, easy-to-write plain text format, then convert it to structurally valid XHTML (or
HTML). Jupyter notebooks use Markdown cells for inserting any content that is not code. For
problem1, we are going to have you create a level 3 heading and a blockquote containing a list that
has in turn additional sublists, like shown in the image below. Your task is to recreate this list with a
heading within a single markdown cell and execute it.

Level 3 Heading

e jtem1

o subitem 1
o subitem 2
o subitem 3

e jtem 2
o subitem 1

o subitem 2
o subitem 3

Solution to Problem 1
Level 3 Heading

e jtem 1

o subitem 1
o subitem 2
o subitem 3

e jtem 2

o subitem 1
o subitem 2
o subitem 3

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 317

https://faq.oit.gatech.edu/content/adobe-licensing
https://www.markdownguide.org/getting-started/

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

v Problem 2: Creating Codeblocks (10pts)

Markdown enables the creation of code blocks within markdown cells for a better differentiation of
regular text from code. Write and execute the markdown syntax required to create the block of
Python code within a code block as depicted in the image below:

import numpy as np
import matplotlib.pyplot as plt

import sklearn

plt.imshow(img) #plotting the image

Solution to Problem 2

import numpy as np
import matplotlib.pyplot as plt

import sklearn

plt.imshow(img) #plotting the image

~ Problem 3: LaTeX in Markdown (10pts)

LaTeX is widely used in academia for the communication and publication of scientific documents in
many fields, including engineering, mathematics, statistics, computer science, physics, economics,
linguistics, quantitative psychology, philosophy, and political science. It is especially useful when it
comes to typesetting mathematical expressions, tables, and matrices. The image below shows
various mathematical expressions typed out using LaTeX in markdown. Your task is to recreate
them in the cell underneath.

A= [4 5] ,and x = [2].Theny=Ax= [28]
3 4 4 22

1
14e—0"x
P(x1|8)xP(8)
P(x1)

o(x) =

P@O|x1) =

Solution to Problem 3

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 417

https://www.latex-project.org/

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

A= [4 5],anda:: [2].Theny:Aw: [28]
3 4 4 22

1
1+e 677

P(0lay) = Ze20)

o(z) =

~ Problem 4: Introduction to Linear Algebra with Python and Numpy (25pts)

This exercise introduces a few basic linear algebra concepts that you can carry out with Python
and the standard library numpy . We will go through some basic matrix operations, analyze inverse
problem using several matrix properties and decompositions and calculate matrix approximations.

v Problem 4 (a) Basic Numpy operations

, ! 1 1 2} [2 -3 1} 2 0
Given A = ,B= , v = | 1| andvg = | 3 |.Use numpy to
-2 -1 1 0 -1 2 0 5

calculate the following:

i. Create matrix A, B and vector v; and vy using numpy array.
ii. Calculate v3 = v; 4+ v and v4 = v1 — V9, using v; and v fromi.
iii. Calculate C = A ® B, which is the Hadamard product (also known as element-wise
multiplication) and matrix product D = Av; and E = AT A.
iv. Calculate the inverse of E,i.e, F = E~ 1.

Solution to Problem 4 Part (a)

import numpy as np

Problem 4(a) question i
A np'ar‘r‘ay([[l.v 11 2], [_2) '1) 1]])
B np.array([[z, '31 1]) [0) '1: 2]])

vl
v2

np.array([[2], [1], [e]])
np.array([[-5], [3], [2]])

Problem 4(a) question ii
v3 = np.add(vl, v2)
v4 = np.subtract(vl, v2)

Problem 4(a) question iii

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 5117

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

C = np.multiply(A, B)
D = np.matmul(A, v1)
E = np.matmul(A.transpose(), A)

Problem 4(a) question iv
F = np.linalg.inv(E)

print('[Question i]")
print('A: \n',A)
print('B: \n',B)
print('vl: \n', vl)
print('v2: \n', v2)

print('[Question ii]")
print('v3=vl+v2: \n', v3)
print('v4=vl-v2: \n', v4)

print('[Question iii]")

print('C = Hadamard Product of A and B: \n',C)
print('D = Matrix Product of A and v1: \n',D)
print('E = Matrix Product of AT and A: \n',E)

print('[Question iv]")
print('F = E~-1: \n',F)

[Question i]
A:
[([1 1 2]
[-2 -1 1]]
B:
[[2 -3 1]

[-1 2]]

vl:

[[2]

[1]

[e]]

v2:

[[-5]

[3]

[2]]

[Question ii]

v3=v1+v2:

[[-3]

[4]

[2]]

v4=v1l-v2:

([7]

[-2]

[-2]]

[Question iii]

C = Hadamard Product of A and B:

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 6/17

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

([2-3 2]
[0 1 2]]

D = Matrix Product of A and vi:
[[3]
[-51]

E = Matrix Product of A~T and A:
[[5 3 @]
[3 2 1]
[0 15]]

[Question iv]

F = E~-1:
[[-1.35107989e+15 2.25179981e+15 -4.50359963e+14]
[2.25179981e+15 -3.75299969e+15 7.50599938e+14]
[-4.50359963e+14 7.50599938e+14 -1.50119988e+14]]

v Problem 4 (b) Linear inverse problem y = Ax

Inverse problem is a very common engineering problem across different fields of study, e.g. medical
image applications and parameter estimation. Its simplest form (without noise) is composed of a
measurement ¥, a system matrix A, and the system parameter z. We also know the forward part

y = Ax. Our task is to find using y and A. There are several algorithms focusing on inverse
problems such as least square (we will learn this in later lectures), compressed sensing and deep
learning approach. Part of this homework is to get you try to seek assistance by serching through
numpy and other resources.

1 —2 0 2]

Suppose that A = 0 -1 0 1 and y; = 1
o 1 -2 1 —1
1 0 o0 1] | 2 |

i. Are the rows in A linearly independent? Calculate the inverse of A and the eigen
decomposition VAAAVA_1 of A using numpy .
ii. Using the eigen decomposition of A, calculate the solution x for y; = Az.
iii. Now suppose we have a different system matrix B and measuerment ys:

(2 -3 1 —47 [—17]
1 0 0 2 3
B=|0 1 -3 5 |andy2=] 2
2 2 -1 1 2
13 3 1 -2 | 2

What is the rank of B? Calculate the SVD decomposition UBDBVBT of B using numpy .

iv. Since B has more rows than columns, we need Moore-Penrose Pseudo-inverse
Bt = (BTB)_lBT to calculate the solution x. Calculate x using Ug, Dp and V3.

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true Yavs

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

Solution to Problem 4 Part (b)
i. Ais linearly independent since it has an inverse matrix.
iii. Rank of B=4

yl = np.transpose(np.array([[3, 1, -1, 2]]))
A = np.array([[1, -2, 0, 2],

[0, -1, o, 1],

[e, 1, -2, 1],

[1, o, o, 1]1])

y2 = np.transpose(np.array([[-1, 3, 2, 2, 2]]))
B = np.array([[2, -3, 1, -4],

[1, o0, 0, 2],

[e, 1, -3, 5],

[2, 2, -1, 1],

[3, 3, 1, -21])

Problem 4(b) question i
A_inverse = np.linalg.inv(A)
Lamda_A, V_A = np.linalg.eig(A)

Problem 4(b) question ii
x1 = np.matmul(np.matmul(np.matmul(V_A , np.linalg.inv(np.diag(Lamda_A))) , np.linalg.inv(V

Problem 4(b) question iii
B_rank = np.linalg.matrix_rank(B)
U B, D_B, V_B_transpose = np.linalg.svd(B)

Problem 4(b) question iv
x2 = np.matmul(np.matmul(np.matmul(np.transpose(V_B_transpose) , np.concatenate((np.linalg
Formula I used: B_pseudo_inv = V_B * [D_B_inv, [@]] * U_B_transpose

print('inverse of A: \n', A_inverse)
print('lambda of A: \n', Lamda_A)
print('V_A(eigenvectors): \n', V_A)

print('x1: \n', x1)

print('rank of B: ', B_rank)
print('U_B:, \n', U_B)
print('D_B:, \n', D_B)
print('V_B”T:, \n', V_B_transpose)

print('x2: \n', x2)

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 8/17

1/27/22, 1:36 PM

inverse of A:

[[[1. -2. ©o. 0.]

[-1. 1. eo. 1.

[-1. 1.5 -0.5 1.]

[-1. 2. o 1. 1]
lambda of A:

[-2. -1.4811943
V_A(eigenvectors):
0.6243338
0 0.52292041
1. 0.52292041
(%] -0.25162632

[1.00000000e+00]
-1.77635684e-15]
1.00000000e+00]
1.00000000e+00]]
k of B: 4

0.19248146 -0.08968427
0.70886224 -0.02864004
0.18257136 -0.51213591
0.21730267 -0.84930671

J
0.61637039 0.08678363 0.75940516 0.1606979

ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

0.31110782 2.17008649]

0.42414154 0©.73014725]
-0.46959249 0.19684364]
-0.46959249 0.19684364]
-0.61568639 0.62401135]]

0.10018049]
0.36573823 -0.90417375 -0.06010829]
0.45517644 ©.30855955 0.44079414]
9.25558792 ©0.24366463 -0.7613717]

-0.13049356 -0.0454376 ©0.46083024]]

D B:,
[8.12182025 5.23174328 2.85295385 1.23513257]
V_B"T:,
[[-9.16339005 ©0.27964275 -0.38696143 0.86334494]
[-90.66675843 -0.73802989 -0.03143638 0.09877668]
[©.7025153 -0.59704571 -0.34778188 ©0.17045949]
[-0.18764098 ©.14369496 -0.85341688 -0.46456673]]
X2:
[[1.00000000e+00]
[5.55111512e-16]
[1.00000000e+00]
[1.00000000e+00]]

v Problem 5: Vector Norms (15pts)

Having seen some examples of matrix vector products, we now move onto the subject of vector
norms, which quantify vectors, in magnitude. There are a number of vector norms. Ly and L; are
among the most common and frequently used norms. For a vector v = [vy, vy, - - - ,’Un]T, we
have:

|h4b ::\/U%%—vg-%---%—v% (L-2 norm of v)
[v]|, = |v1| + |vg| + -+ |v,| (L1 norm of v)

You can use the numpy function numpy.linalg.norm to compute vector and matrix norms of
different kinds by passing the appropriate arguments as shown below:

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 917

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

from numpy.linalg import norm

12
11

norm(v,2) # computes 12 norm of v

norm(v,1) # computes 11 norm of v

Your tasks are as follows:

a. Write your own function to compute the L; norm. Complete the function definition given
below by using the norm definition above. In this part, do not use the numpy L7 function and
any for loop.

b. Write your own function to compute the Ly norm. Complete the function definition given
below by using the norm definition above. In this part, do not use the numpy Lo function and
any for loop.

c. Compare your answers on any vector of your own to the ones obtained by numpy's norm
function

(Hint: Think about what is special about A.)

Solution to Problem 5

from numpy.linalg import norm
import numpy as np

def 12(v):
"'"'"Function computes 12 norm for given vector v'''

12 norm = np.sqrt(np.sum(np.square(v)))
return 12_norm

def 11(v):
"'"'"Function computes 11 norm for given vector v'''

11 norm = np.sum(np.absolute(v))
return 11_norm
v = np.array([4, 5, 6, 7]) # define any vector here
Hommmm - Don't change below!-----------coomm e #

print("L2 norm with \'norm\': %.4f" %norm(v,2),' | L2 norm with function: %.4f' %12(v))
print('L1 norm with \'norm\': %.3f' %norm(v,1),' | L2 norm with function: %.3f'%11(v))

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 10/17

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

L2 norm with 'norm': 11.2250 | L2 norm with function: 11.2250
L1 norm with 'norm': 22.000 | L2 norm with function: 22.000

5. ¢. My answer and numpy's norm looks the same.

v Problem 6: Probability theory review (Optional)

In this problem, we will test some of the basic concepts in probability theory. Please answer these
questions in the text cell with Latex in Markdown.

Note: This question is optional and it's not necessary to turn it in, but it may serve as a good
excercise for you to review some of fundamentals of probability theory.

Problem 6 (a)
Suppose that X and Y are two independent random variables. Show that they are uncorrelated in
the discrete case. Recall that the two random variables X and Y are independent when

P(XNY)=P(X)P(Y). They are uncorrelated when E[(X — E(X))(Y — E[Y])] = 0.

Problem 6 (b)
Let X and Y be two independent random variabales, and X ~ N (ux,o%) and
Y ~ N(uy,0%).Assume Z = X + Y, show Z ~ N(ux + py,0% + 0%).

Problem 6 (c)
X is a uniform random variable that X ~ Uni f(0,10) and givenanevent A = {1 < X < 5}

i. What is the conditional PDF, fx 4 ()
ii. What is the conditional expected value, E[X | A]
iii. What is the conditional variance, Var[X|A]

[Put your answer in this cell]

v Problem 7: Loading and Visualizing Datasets (25pts)

Problem 7 (a)

For the purposes of this section, we will have you load and visualize the Iris dataset and its various
features. The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by the
British statistician, eugenicist, and biologist Ronald Fisher in his 1936 paper The use of multiple

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 1117

https://en.wikipedia.org/wiki/Iris_flower_data_set

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory
measurements in taxonomic problems as an example of linear discriminant analysis. You may
import the dataset using the popular sklearn library by running the following snippet of code:

from sklearn.datasets import load_iris

iris = load_iris()

(Note: You may have to install sklearn via the pip install sklearn command.)
Explore various features of the dataset, and then answer the following questions:

i. How many feature attributes does the dataset have?

ii. What are the feature names for the attributes?
iii. How many different target classes exist in the dataset?
iv. What are the class names?

The names of the various features and targets should printed in an output cell once you execute it.
(Hint: 1t may be helpful to refer to the documentation for the load_iris function.)

Solution to Problem 7 Part (a)

i. 4 features

ii. 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'
iii. 3 classes

iV. 'setosa, 'versicolor', 'virginica'

pip install sklearn (keep commented if sklearn already installed)
from sklearn.datasets import load iris

iris = load iris()

question i

print('Number of feature is:')
n_samples, n_features = iris.data.shape
print(n_features)

question ii
print('Feature names are:')
print(iris.feature_names)

qustion iii

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 12/17

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory
print('Number of target classes is:')
print(iris.target names.shape[@])

question iv
print('Class names are:')
print(iris.target_names)

Number of feature is:
4
Feature names are:

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

Number of target classes is:

3

Class names are:

['setosa" 'versicolor' 'virginica']

v Problem 7 (b)

We are now going to visualize the data. Your analysis of the Iris dataset above should have revealed

that it has more than two features. For ease of use, however, we are only going to use two of these

features and plot them against each other in a scatter plot for each training example in the dataset.

We are going to use the standard plotting library, Matplotlib, for this purpose. Once again, you might

have to install the matplotlib library via a pip install matplotlib command. Fill in the template
code provide below in the places indicated to generate 2D scatter plots for various feature

combinations as shown in the image below.

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true

13/17

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

45
" @ setosa 71 @ stosa . 25 @ setosa e o -
. @ versicolor & versicolor * @ versicalor . e e
. & virginica o virginica . . @ virginica . :. bt :
40 6 ® e’ o! ® ses e .
. o, . 20 1] L L]
. e ot % (] . .
. sesenee o ..
~ _s RN AR _ . .
£ 35 € LI A} T . e
S 2 . o 0 e'e el S1s e o0 sese s e
5 5 88,0 " ° 5 L] . (L]
] G4 o %% h oo B sss sses o
z 2 - = 00 @
T 30 3 o2 . £, -
& T . TR
“w agz . a
25
2 05
L
L] L] L] Ll L
oo s22efdesd, &
Be%e 1 see o
20 . 1{* o
T T T T T T T T T T T T T T T T 00 T T T T T T T T
45 50 55 60 65 70 75 80 45 50 55 60 65 70 75 BO 45 50 55 60 65 70 75 80
sepal length (cm) sepal length (cm) sepal length (cm)
71 @ setosa 25 @ setosa e = 25 @ setosa P
@ ersicolor L . e versicolor . . . @ versicolor L)
i . 8 aee o . " e .
. @ virginica «®e e ° & virginica P . @ virginica LR
. 8 oe 20 bl
* o0 . z . e e . 20 o ee
PRl DR e se we
5 T l.. e sesnee "-e mes e
— H H _ . . _ L
E ! 1 e £ . N .o z e & @
- 0y 0, "‘ L] S15 L[] L[] eenee S15 [N 1
5 t.%8 5 ssssnse £ * o .
g4 ee _geogt 2 e o ssse 2
1 M = sse o 2 -ee o
3 . . B (X E .
fga L L10{ @ ese o & 10 LLL A
.
. .
2 . " 05 . 05 .
. 5 o see . came
.'I'.I'.- o, . . o0 . -e
.] ' LY sssmemBese & @ * e o
1 *=
T T T T T T 0.0 T T T T T T 00 T T T T T
20 25 30 EL 40 45 20 25 30 35 40 45 1 2 4 5 6 7
sepal width (cm) sepal width (cm) petal length (cm)

Solution to Problem 7 Part (b)

import matplotlib.pyplot as plt
import numpy as np
import itertools

def combinations(iterable, r=2):
"""Function generates unique pairwise permutations for the given iterable"""
pool = tuple(iterable)
n = len(pool)
ifr > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != 1 4+ n - r:
break
else:
return
indices[i] += 1
for j in range(i+l, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 1417

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

feature_names = iris.feature_names # write code to extract list of feature names
class_names = iris.target names # extract list of class names

features = iris.data # extract features as an N x D numpy array, where N is the number of dat
labels = iris.target # extract labels as an N dimensional numpy array, where N is the number

Extract total number of crossplots possible with the given feature sizes
total_plots = len([*combinations(list(range(len(feature_names))), 2)])

generate array of plots of the desired shape. play around with this to get the appropriate
fig, axes = plt.subplots(2,3, figsize=(20,12))

for ax, feature_combination in zip(axes.flatten(), combinations(list(range(len(feature_names)

feature_ 1
feature_2

feature_combination[@]
feature_combination[1]

for class_num in np.unique(labels):
ax.scatter(features[:,feature_1][labels==class_num], features[:,feature_2][labels==cl

ax.set xlabel(feature names[feature 1])
ax.set_ylabel(feature_names[feature_2])

ax.legend()

plt.show()

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 15/17

1/27/22, 1:36 PM

45

L] e setosa
. @ versicolor
. ® virginica
40 .
.
. . .
* "
_ . e .
E 35 ase @
o< LT] . o
5 . e @
=2 . 0 @ L e 80 @
=z . o0 e 00
T 304 ee eee * oo see ssse oo .
o . e eeses o .
*88 See8s @ * @
. LI J L
e o
25 (] see [L]
. .
L L . L

20 L]

45 so 55 60 &5 70 75 B0
sepal length (cm)

7 .
. .
e®e . ¢
6 N HI R
. oo."°o
$e 108
3 L4 LI '-
E l‘ ele
= o, ®, fo0 o
5 '} [] 1 @ setosa
gﬂl LA '] L L] . \lf!rs.i(.ulm
= . . . @ virginica
Z ee
23 L]
‘ HERT
°p . . .
- g '.l'l e, "
1 . .
T T T T T T
20 25 30 35 40 45

sepal width {cm)

petal length {cm)
[el u

[

15

petal width {cm)

05

00

e sefosa .
@ versicolor * .
- .
& virginica . g o
° " ®e
L]
"8 Yo,
(11 ‘20,
"3, 1% 3
sogey oy
L] Se00 070,05,
28"
. ;ci o
0 ®e
[
L]
* @
. @
.0
e, @
‘...I.il. H I
®* .
T T T T T T T T
45 50 55 60 B5 70 75 go
sepal length {cm)
[] L]
L] . .
L] sen @
. @ .
. 80 @
. [] L]
[X
® essnes
[] .
. . (X]
[} [] senee .
ssssnee @ =efosa
e o eowse @ wersicolor
LA I wirginica
os L] g
* o0 o0
L]
.
. [XX] L]
[] . .o .
ssemsRERES & @
. . L]
T T T T T T
20 25 30 5 40 45

seﬁal width (cm}

petal width (cm)

petal width {cm)

=
=1

254

20 A

15

0.5 4

0.0 4

25 4

204

—
wn

05

0.0 4

ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

® setosa L4 . .
" L] . .
[] v.r:‘rslc.olor o 8 see -
@ virginica e .
e 900 @ L
. L .
L] [1] .
2909808 @ (1]
L .
. @
® e o8 s0ee 0 @
. . LLLIN]
(1] LLLLUIE
.
. (1]
[1] LTI
L]
L
e 98 @
LI L) L
o ssssassess o
L *e @

45 50 55 60 &5 70 75 B8O
sepal length (cm)

® setosa - »
LI
® ersicolor - soe .
@ wirginica .o .
- e
== L J
»e
-e sses o
*
LL L
- 0 o
* o L
- &
.
LLLA]
L
L
seme
L

- I ¢
L
T T T T T T T
1 2 3 4 5 & 7

petal length {cm}

v Problem 7 (c)

Do all feature crossplots result in well-distinguished classes? Based off your plots, which feature

combinations result in the most poorly-distinuished classes? Which two features give the most

well-distinuished classes?

Solution to Problem 7 Part (c)

* No, not all crossplots result in well-distinguished classes.

» The combination result in the most poorly-distinguished is 'sepal length (cm)' and 'sepal width

(cm)'.

e The combination result in the most well-distinguished is ‘petal length (cm)' and 'petal width

(cm)'.

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgeQhvVmUbB6s14a5?authuser=1#scrollTo=zxcxd87oBm-A&printMode=true 16/17

1/27/22, 1:36 PM ECE4803-Sp22-HW1_Python_Colab_basics (1).ipynb - Colaboratory

v 0s completed at 10:31 AM ® X

https://colab.research.google.com/drive/1e-ASMc70Vvm4CtDHgqeQhvVmUbB6s14a5?authuser=1#scroll To=zxcxd87oBm-A&printMode=true 17/17

