
2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 1/30

ECE 4803: Fundamentamentals of Machine Learning
(FunML)

Spring 2022

Homework Assignment # 2

Due: Friday, February 04, 2022 @8PM

Georgia Institute of Technology

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython notebook. It is
designed to be used with Google Colab , but you may use other tools (e.g., Jupyter Lab) as
well.
Make sure that you execute all cells in a way so their output is printed beneath the
corresponding cell. Thus, after successfully executing all cells properly, the resulting
notebook has all the questions and your answers.
Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas
under Assignments.
Make sure you delete any scratch cells before you export this document as a PDF. Do not
change the order of the questions and do not remove any part of the questions. Edit at the
indicated places only.
Rename the PDF according to the format:
LastName_FirstName_ECE_4803_sp22_assignment_#.pdf
It is encouraged for you to discuss homework problems amongst each other, but any copying
is strictly prohibited and will be subject to Georgia Tech Honor Code.
Late homework is not accepted unless arranged otherwise and in advance.
Comment on your codes.
Refer to the tutorial and the supplementary/reading materials that are posted on Canvas for
lectures 3, 4, and 5 to help you with this assignment.
IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and
the part of the problem you are working on. For example, start your solution for Part (c) of
Problem 2 by having the �rst line as:
Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 2/30

Learn the fundamentals behind Naïve Bayes and Logistic Regression from both the
theoretical and implemntation standpoints
Learn the use of classes in Python
Learn the use of performance evaluation metrics for classi�cation tasks

Assignment Objectives:

Here is a video summarizes how to export Ipythin Notebook into PDF.

[Method1: Print to PDF]
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose
[Save as PDF] to export this Ipython Notebook to PDF for submission.
Note: Sometimes �gures or texts are splited into different pages. Try to tweak the layout by
adding empty lines to avoid this effect as much as you can.

[Method2: colab-pdf script]
The author of that video provided an alternative method that can generate better layout PDF.
However, it only works for Ipythin Notebook without embedded images.
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run
the �srt cell, it will ask for google drive permission. Executing the second cell will generate
the PDF �le in your google drive home directory. Make sure you use the correct path and �le
name.

this will link colab with your google drive

from google.colab import drive

drive.mount('/content/drive')

Note: Georgia Tech provides a student discount for Adobe Acrobat subscription. Further
information can be found here.

%%capture

!wget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py

from colab_pdf import colab_pdf

colab_pdf('LastName_FirstName_ECE_4803_sp22_assignment_#.ipynb') ## change path and

Guide for Exporting Ipython Notebook to PDF:

https://www.youtube.com/watch?v=yXzw9Dd_Na0
https://github.com/brpy/colab-pdf
https://faq.oit.gatech.edu/content/adobe-licensing

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 3/30

In Lecture 4, we learnt the Naïve Bayes classi�cation algorithm to classify discrete-valued feature
data. In this problem, we extend this to real-valued data with the popular Iris dataset provided by
the sklearn library. To summarize Naïve Bayes algorithm and implementation, here is a step-by-
step guide:

0. inspect the dataset and view it
1. write down the Bayes Theorem equation
2. apply/utilize the naïve conditional independence assumption
3. calculate the prior probabilities using the dataset
4. model the likelihood and caluclate model parameters using the dataset. Now you have all

components you need for Naïve Bayes classi�er.
5. use the likelihood and the priori to calculate posterior probabilities for the test data.
�. categorize the test data according to the highest posterior probability value

In Homework 1, we studied the feature (input) and the target (output) of the Iris dataset.

[Execute this cell below]

Problem 1: Naïve Bayes for Classifying Real-Valued Data (40pts)

pip install sklearn (keep commented if sklearn already installed)
import numpy as np
from sklearn.datasets import load_iris

iris = load_iris()

print('Number of feature is: ' + str(len(iris['feature_names'])) + '\n')

print('Feature names are:')
print(iris['feature_names'])

print('\nNumber of target classes is: ' + str(len(iris['target_names'])) + '\n')

print('Class names are:')
print(iris['target_names'])

Number of feature is: 4

Feature names are:
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

Number of target classes is: 3

Class names are:
['setosa' 'versicolor' 'virginica']

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 4/30

Now, we know that there are 4 features and 3 classes in Iris dataset, whereas
 and , being a 4-dimensional feature vector for a

data point and being the corresponding label taking on values from the set .
x = [, , , ∈x1 x2 x3 x4]T R

4 y ∈ { , , }c0 c1 c2 x

y {ci}
2
i=0

For simplicity, we only take the �rst feature and the �rst two classes for this part of the problem,
part 1(a). That is, we are trying to use only "sepal length" feature to decide if a �ower belongs to
"setosa" or "versicolor" classes. According to Bayes Theorem, we have: (take as example)

The left hand side basically tells us that given a certain feature ("sepal length"),
the probability that this �ower belongs to class ("versicolor"). Also, we have

, since this �ower either belongs to "setosa" or "versicolor"
class.

Questions: In the above equation, which of the terms does correspond to the likelihood, the
marginal likelihood, the prior probabilites, and the posterior probabilities?

What does mean, in plain english, in this part of the problem?

Problem 1 (a) Review of Bayes Theorem (5pts)

c1

P(y = |) =c1 x1
P(|y =)P(y =)x1 c1 c1

P()x1

P(y = |)c1 x1 x1

c1

P(y = |) + P(y = |) = 1c1 x1 c0 x1

P(|y =)x1 c1

Solution to Problem 1 Part (a)

Likelihood:
Marginal Likelihood:
Prior Probabilities:
Posterior Probabilities:

 means that given a certain class ("versicolor"), the the probability that this
�ower has the feature ("sepal length")

P(|y =)x1 c1

P()x1

P(y =)c1

P(y = |)c1 x1

P(|y =)x1 c1 c1

x1

Now, we go back to original 4 features and 3 classes setup in Iris , the Bayes theorem becomes:

Problem 1 (b) Naïve Bayes and Priori (5pts)

P(y = |x) =ck
P(x|y =)P(y =)ck ck

P(x)

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 5/30

Note that is boldface which means it represnets a vector of feature. Since is a multivariate
distribution of 4 features, modeling it is not an easy task. This is where the naïve assumption
comes into play—it assumes features are conditionally independent of each other. Hence we can
decouple the likelihood:

you can also observe that the denominator is merely a scaling constant and does not
depend on . Therefore, we usually ignore that for our purposes and to simplify the calculations.
The above formulation for Naïve Bayes then reduces to:

Now, you can clearly notice that in order to get the posterior probabilities, we need each likelihood
and the prior probabilities. We �rst look at the prior probabilities so that we can simply estimate

 by calculating the ratio of each in the Iris dataset. That is ,

where is the number of examples in class, and is the number of total examples.

Question: Complete the cell below that calculates the total number of examples in Iris , how
many examples in each class , and the value of for each ? [You can use the table
below to help yourself build the python implementation in the cell below]

x P(x)

P(y = |x) =ck
P(|y =)P(y =)∏4

j=1 xj ck ck

P(x)

P(x)

y

P(y = |x) ∝ P(|y =) × P(y =)ck ∏
j=1

4

xj ck ck

P(y =)ck ck P(y =) =ck
Nck

N

Nck ck N

N

Nck P(y =)ck k

Solution to Problem 1 Part (b)

P (y = 0) P (y = 1) P (y = 2)

labels = iris.target

'''
N: an integer value
 Number of total examples in Iris dataset.

N_ck: ndarray of shape (4,)
 Number of examples in each class.

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 6/30

P_yck: ndarray of shape (4,)
 Priori of each class.
'''

#-----------------Don't change anything above------------------------#

N = iris.target.shape[0]

N_ck = np.bincount(iris.target)

P_yck = np.divide(N_ck, N)

#-----------------Don't change anything below------------------------#
print('Total number of examples in Iris: N =', end =' ')
print(N)

for i in range(3):
 print('Number of examples in class ' + str(i) + ': N_c' +str(i)+ ' =', end =' ')
 print(N_ck[i])

for i in range(3):
 print('P(y=c' + str(i) + ') =', end =' ')
 print(P_yck[i])

Total number of examples in Iris: N = 150
Number of examples in class 0: N_c0 = 50
Number of examples in class 1: N_c1 = 50
Number of examples in class 2: N_c2 = 50
P(y=c0) = 0.3333333333333333
P(y=c1) = 0.3333333333333333
P(y=c2) = 0.3333333333333333

Next, we want to link our likelihood to probabilistic models. Each of the terms
conditions a feature variable on a target class via a probability distribution parameterized by
certain parameters, . These parameters could be the mean and standard deviation of a Gaussian
distribtuion in case of real-valued features, or they could just be the success rate in a Bernoulli
distribution in case of binary valued . In any case, these parameters are learnt during the training
process from the labeled training data. It would then be more appropriate to write the above
formulation as:

where represents the parameter set characterizing the conditional distribution of feature on
class .

Problem 1 (c) Probabilistic Model for Likelihood (10pts)

P(|y =)xj ck

θ

xj

P(y = |x) ∝ P(|y = ,) × P(y =),ck ∏
j=1

4

xj ck θjck ck

θjck j

ck

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 7/30

Question: We load a few examples in Iris and assume their features to be independent of each

other and sampled from Gaussian distributions. Say and

. refer to the mean and st. deviation, respectively, of the

 feature variable in class , refers to the training example number, and is the
identity function that takes the value 1 when the is true and 0 otherwise. Complete the cell
below that calculates values of the mean, , and std, , for every feature and for each class. [You
can use the table below to help yourself build the python implementation in the cell below]

=μ̂jck

×∑
N
i=1 xij 1 =yi ck

Nck

=σ̂jck
(− ×∑

N
i=1 xij μ̂jck)

2
1 =yi ck

Nck

− −−−−−−−−−−−−−
√ ,μjck σjck

j − th ck i 1cond
cond

μ̂ σ̂

Solution to Problem 1 Part (c)

μ̂1y μ̂2y μ̂3y μ̂4y

y = 0

y = 1

y = 2

σ̂1y σ̂2y σ̂3y σ̂4y

y = 0

y = 1

y = 2

features = iris.data[1::17, :]
labels = iris.target[1::17]

print('A subset of the Iris dataset:')
print('example number x1 x2 x3 x4 y')
for i in range(9):
 print(' '+ str(i+1), end =' ')
 print(features[i, :], end =' ')
 print(labels[i])

'''
mu: ndarray of shape (3, 4)
 Numpy array containing mu_jck.

sigma: ndarray of shape (3, 4)
 Numpy array containing sigma_jck.
'''
mu = np.zeros((3, 4))
sigma = np.zeros((3, 4))

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 8/30

#-----------------Don't change anything above------------------------#

mu = np.concatenate(([np.mean(features[labels == 0,:], axis=0)], [np.mean(features[labels ==

sigma = np.concatenate(([np.std(features[labels == 0,:], axis=0)], [np.std(features[labels ==

#-----------------Don't change anything below------------------------#
with np.printoptions(precision=8, floatmode='fixed'):
 print('\nAnswer:')
 print(' mu_1y mu_2y mu_3y mu_4y')
 for i in range(3):
 print('y=' + str(i), end =' ')
 print(mu[i])

 print('\n sigma_1y sigma_2y sigma_3y sigma_4y')
 for i in range(3):
 print('y=' + str(i), end =' ')
 print(sigma[i])

A subset of the Iris dataset:
example number x1 x2 x3 x4 y
 1 [4.9 3. 1.4 0.2] 0
 2 [5.7 3.8 1.7 0.3] 0
 3 [5. 3.2 1.2 0.2] 0
 4 [6.9 3.1 4.9 1.5] 1
 5 [5.6 2.5 3.9 1.1] 1
 6 [6.7 3.1 4.7 1.5] 1
 7 [6.3 2.9 5.6 1.8] 2
 8 [6.9 3.2 5.7 2.3] 2
 9 [6.4 3.1 5.5 1.8] 2

Answer:
 mu_1y mu_2y mu_3y mu_4y
y=0 [5.20000000 3.33333333 1.43333333 0.23333333]
y=1 [6.40000000 2.90000000 4.50000000 1.36666667]
y=2 [6.53333333 3.06666667 5.60000000 1.96666667]

 sigma_1y sigma_2y sigma_3y sigma_4y
y=0 [0.35590261 0.33993463 0.20548047 0.04714045]
y=1 [0.57154761 0.28284271 0.43204938 0.18856181]
y=2 [0.26246693 0.12472191 0.08164966 0.23570226]

Finally, we have our classi�er trained on the subset of Iris , and we can use this model for
inferencing. The inference phase, also referred to as testing phase, is carried out by obtaining the
likelihoods of all test data points by sampling them from the parameterized distributions learnt
earlier, and then maximizing the posterior over all possible labels, as shown below:

Problem 1 (d) Inference (10pts)

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 9/30

The associated with the highest posterior probility is the classi�ed result of the test data.
This is called the Maximum a posteriori (MAP) estimation. Alternatively, the prior may be set to be
uniform, in which case the formulation reduces to just maximizing the conditional data likelihoods,
in what is known as the Maximum Likelihood Estimation (MLE).

An issue that frequently occurs with long chains of probability products is that of numerical
under�ow i.e., the computer is unable to handle extremely high levels of precision required and
forces the result to just be zero. This is often circumvented by computing the logs of the
probabilities rather than the raw probabilities themselves, turning the product chain into a
summation chain. The maximization may then be carried out in the log space (as base). This is
made possible by the monotonic behavior of the log function—what minimizes or maximizes
also minimizes or maximizes, respectively, . The restructured formulation is given below:

To obtain the posteriors back, one may always exponentiate the expression on the right hand side,
and normalize afterwards.

Questions: In problem 1 (b), we calculated . In problem 1 (c), we calculated and
 for the Gaussian likelihood model, . You will need to use

those numbers to answer the following questions.

i) Write down the log form of the likelihood function. In other words, what is ?
Then complete the log_gaussian function.

ii) Suppose you are given a test data sample, �ower with feature . Compute
the posteriors for this given sample by hand, calculator, or numpy. Then, complete the calculation
of the variable posteriors in the cell below.

iii) Finally, according to the result above, to which class does this test example belong? Also,
complete the calculation of the variable y_hat in the cell below.

[You should answer this question both in a text cell and the code cell below]

= P(|y = ,) × P(y =)ŷ argmax
ck

∏
j=1

4

xtestj ck θjck ck

=ŷ ck

e

f(x)

logf(x)

= logP(|y = ,) + logP(y =)ŷ argmax
ck

∑
j=1

4

xtestj ck θjck ck

P(y =)ck μjck

σjck P(|y =) = N (,)xj ck μjck σ2
jck

logP(|y =)xj ck

= [5, 3, 1, 0.5x
test]T

Solution to Problem 1 Part (d)

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 10/30

i)

ii) Hand Calculation of posteriors using MATLAB as calculator:

iii) Based on the value of y hat, they belong to .

log(P(|y =)) = log(exp (−)) = log() −xj ck
1

2πσ2
yk

√

(−xj μyk)
2

2σ2
yk

1

2πσ2
yk

√

(−xj μyk)
2

2σ2
yk

c0

x_test = np.array([[5, 3, 1, 0.5]])

'''
posteriors: ndarray of shape (3,)
 Numpy array containing posteriers for each class

y_hat: an integer value
 Classified result of the test data.

'''

#-----------------Don't change anything above------------------------#

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 11/30

question i
def log_gaussian(x, mean, std):
 """Function computes log P(x) from a normal distribution specified by
 parameters mean and std."""

 log_likelihood = np.log(1/np.sqrt(2*(np.pi)*np.square(std))) - (np.square(x-mean))/(2*np.

 return log_likelihood

question ii
posteriors = np.exp(np.sum(log_gaussian(x_test, mu, sigma), axis = 1) + np.log(P_yck))
posteriors = posteriors / np.sum(posteriors)

question iii
y_hat = np.argmax(posteriors, axis = 0)

#-----------------Don't change anything below------------------------#
print('y_hat=', end=' ')
print(y_hat)

print('posteriors =', end=' ')
print(posteriors)

y_hat= 0
posteriors = [1.00000000e+00 9.40957643e-14 0.00000000e+00]

Finally, you are going to implement your very own Naïve Bayes classi�er, with its fit() and
predict() functions, among others. We will work with the Iris dataset as an example, but the
class should be able to take as input any other real valued feature data of any number of features
and training examples, and be able to predict classes based on the MAP principle for unseen test
data, as well as return the normalized posterior probabilities. Since we are working with real-valued
data, we are going to impose the conditional feature distributions to be gaussians parameterized
by two paramaters, mean () and standard deviation ().

i) Complete the log_gaussian() function. This should be similar to problem 1 (d).

ii) Complete the fit() function. This function �ts the model parameters to the dataset. This
should be similar to problem 1 (b) and (c).

iii) Complete the predict function. It uses the parameters calculated in ii), perform inference on
test data by computing the posterior probabilities for each point in the test set and then selecting
the class corresponding to the highest posterior. This should be similar to problem 1 (d).

Problem 1 (e) Naïve Bayes Classi�er Implementation (10pts)

μ σ

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 12/30

Do not change the function de�nitions for the functions de�ned in the MyNaiveBayes
class template below. They should take inputs and output results of the form
indicated. You are free to add other internal functions and use them inside the class
de�nition as you see convenient. However, that should not change the external
code's structure, nor the shape and form of the outputs returned. Note: Any variable
preceded by the self. keyword gets stored by the class structure and can be used
and changed afterwards inside the class regardless of whether the function that �rst
made it returns it or not.

Solution to Problem 1 Part (e)

implement naive bayes class for iris

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

class MyNaiveBayes:
 def __init__(self, X_train, y_train):
 """Function intializes the Naive Bayes class.

 Parameters:

 X_train: ndarray of shape (N,D)
 Numpy array containing N training examples, each D dimensional.

 y_train: ndarray of shape (N,)
 Numpy array containing vector of ground truth classes for examples
 in X_train
 """

 self.X_train = X_train
 self.y_train = y_train

 ## quetion i
 def log_gaussian(self, x, mean, std):
 """Function computes log P(x) from a normal distribution specified by
 parameters mean and std. To be called during inference"""

 log_likelihood = np.log(1/np.sqrt(2*(np.pi)*np.square(std))) - (np.square(x-mean))/

 return log_likelihood

 ## quetion ii
 def fit(self):

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 13/30

 """Function computes likelihood parameters from training data in the \
 training phase"""

 self.priors = np.divide(np.bincount(self.y_train), self.y_train.shape[0])

 # calculate per class data likelihoods
 if np.shape(self.priors)[0] == 3:
 self.feature_means = np.concatenate(([np.mean(self.X_train[self.y_train == 0], axis
 self.feature_std = np.concatenate(([np.std(self.X_train[self.y_train == 0], axis=0)

 if np.shape(self.priors)[0] == 2:
 self.feature_means = np.concatenate(([np.mean(self.X_train[self.y_train == 0], axis
 self.feature_std = np.concatenate(([np.std(self.X_train[self.y_train == 0], axis=0)

 ## quetion iii
 def predict(self, X_test):
 """Function computes the normalized posterior probabilities and class \
 predictions for the provided test data.

 Parameters:

 X_test: ndarray of shape (N,D)
 2D numpy array containing N testing examples having D dimensions each.

 Returns:

 y_pred: ndarray of shape (N,1)
 vector containing class predictions for each of the N training\
 points in X_test.

 posteriors: ndarray of shape (N,C)
 numpy array containing normalized class posterior probabilities \
 for each of the C classes for each training example.

 """
 posteriors = np.zeros((np.shape(X_test)[0], np.shape(self.priors)[0]))

 for ii in range(np.shape(X_test)[0]):
 p = np.exp(np.sum(log_gaussian(np.reshape(X_test[ii, :], (1,-1)) , self.feature_
 posteriors[ii, :] = p / np.sum(p)

 y_pred = np.argmax(posteriors, axis = 1)

 return y_pred, posteriors

#-----------------Don't change anything below------------------------#

define train and test sizes
N_train = 20
N_test = 150 - N_train

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 14/30

load data
iris = load_iris()
X, y = iris.data, iris.target

train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=N_test,
 train_size=N_train,
 random_state=4803)

model = MyNaiveBayes(X_train, y_train)
model.fit()
y_pred, _ = model.predict(X_test)

print("Accuracy Score: %.3f" % accuracy_score(y_test, y_pred))

Accuracy Score: 0.938

Logistic regression is a popular machine learning algorithm for binary classi�cation problems.
Here, we will use the breast_cancer dataset in sklearn to guide you through building your own
classi�er. The target variable can be modeled as a binary random variable taking on values in the
set via a bernoulli distribution characterized by the probability of success, , conditioned on
the dimensional feature vector . Additionally, is obtained by taking the sigmoid of .
This formulation is shown below:

where and is the parameter that we want to learn from dataset. You

may notice: when , , and when , . It's
the same as in the Lecture 4 page 19 with .

Problem 2: Logistic Regression for Binary Classi�cation (40pts)

y

[0, 1] p

d− x ∈ R
d p x

P(y|x) = Ber(y; p)

= Ber(y;σ(x))

= σ(x × (1 − σ(x) , (1))y)1−y

σ(x) = 1

1+e− xwT
w ∈ R

d

y = 0 P(y = 0|x) = 1 − σ(x) y = 1 P(y = 1|x) = σ(x)

b = 0

Please complete the sigmoid function in the cell below. Calculate and
with the given and separately and a test data feature from breast_cancer dataset.

Problem 2 (a) Sigmoid Function (5pts)

P(y = 0|x) P(y = 1|x)

w1 w2 x

Solution to Problem 2 Part (a)

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 15/30

from operator import matmul
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
x = cancer.data[0, :].reshape(1, -1)
y = cancer.target[0]

w1 = np.full(30, 0.002).reshape(-1, 1)
w2 = np.full(30, -0.002).reshape(-1, 1)

'''
P_y0x_w1: A float value
 Conditional probability of y=0 given x with w1.

P_y1x_w1: A float value
 Conditional probability of y=1 given x with w1.

P_y0x_w2: A float value
 Conditional probability of y=0 given x with w2.

P_y1x_w2: A float value
 Conditional probability of y=1 given x with w2.

'''

#-----------------Don't change anything above------------------------#

def sigmoid(X, w):
 """Computes sigmoid for given data array X and parameter w"""

 sigmoid_val = 1/ (1 + np.exp(-np.sum(np.matmul(X,w)))) ##TODO
 ## Note: np.exp(/Elementwise multiply w and X, sum that up and take a negative sign/)

 return sigmoid_val

P_y0x_w1 = 1 - sigmoid(x, w1) ##TODO
P_y1x_w1 = sigmoid(x, w1) ##TODO

P_y0x_w2 = 1 - sigmoid(x, w2) ##TODO
P_y1x_w2 = sigmoid(x, w2) #TODO

#-----------------Don't change anything below------------------------#
print('feature x=', end=' ')
print(x)
print('label y=', end=' ')
print(y)

print('\nUsing w1:')
print('P(y=0|x)=', end=' ')
print(P_y0x_w1)

print('P(y=1|x)=', end=' ')

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 16/30

print(P_y1x_w1)

print('\nUsing w2:')
print('P(y=0|x)=', end=' ')
print(P_y0x_w2)

print('P(y=1|x)=', end=' ')
print(P_y1x_w2)

feature x= [[1.799e+01 1.038e+01 1.228e+02 1.001e+03 1.184e-01 2.776e-01 3.001e-01
 1.471e-01 2.419e-01 7.871e-02 1.095e+00 9.053e-01 8.589e+00 1.534e+02
 6.399e-03 4.904e-02 5.373e-02 1.587e-02 3.003e-02 6.193e-03 2.538e+01
 1.733e+01 1.846e+02 2.019e+03 1.622e-01 6.656e-01 7.119e-01 2.654e-01
 4.601e-01 1.189e-01]]
label y= 0

Using w1:
P(y=0|x)= 0.000798196732087253
P(y=1|x)= 0.9992018032679127

Using w2:
P(y=0|x)= 0.9992018032679127
P(y=1|x)= 0.0007981967320872286

After we know the formulation of the logistic regression, we need to know how to train the
parameter using dataset. In part (a), we already see that different can provide very different

. Hence, our target here is to �nd the best that maximizes for the training data.
As before, it is easier to work with logs of probabilities than the raw probabilities themselves, so we
take the log on both sides of (1) to obtain:

The model training involves maximizing over all possible values of via an MLE
formulation. The equivalent of this is to minimize the negative log-likelihood, over .
This optimization problem is shown below:

Since the training data usually consists of multiple labeled training examples, ,
the optimization is carried out over the expected log likelihood loss, as shown below:

Problem 2 (b) Logistic Regression Cost Function (10pts)

w w

P(y|x) w P(y|x)

log P(y|x) = y × log σ(x) + (1 − y) × log (1 − σ(x))

log P(y|x) w

−log P(y|x) w

= −y × log σ(x) − (1 − y) × log (1 − σ(x))w∗ argmin
w

D = {(,)xi yi }Ni=1

w∗ = [−y × log σ(x) − (1 − y) × log (1 − σ(x))]argmin
w

E
(x,y)∽P(x,y)

= − × log σ() − (1 −) × log (1 − σ()) = LL(x, y,w) (2argmin
w

1

N
∑
i=1

N

yi xi yi xi

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 17/30

Equation (2) is the cost function of logistic regression, and by minimizing this cost function with ,
we can maximize the for the training data.

Question: Complete the cost function in the cell below. Calculate the cost function value using the
given and separately with the data from breast_cancer dataset. (You may need to use the
sigmoid function in problem 2 (a)) Which is better? or ?

w

P(y|x)

w1 w2

w w1 w2

Solution to Problem 2 Part (b)

cancer = load_breast_cancer()
data = cancer.data
label = cancer.target

w1 = np.full(30, 0.002).reshape(-1, 1)
w2 = np.full(30, -0.002).reshape(-1, 1)

'''
cost_1: A float value
 Cost function value with w1.

cost_2: A float value
 Cost function value with w2.

'''

#-----------------Don't change anything above------------------------#

def logit_cost_func(w, X, y):
 """function computes value of cost function given the w vector, the feature data, and corre
 """
 cost = np.mean(- np.multiply(np.reshape(y, (-1,1)), np.log(1/(1+np.exp(-np.matmul(X, w)

 return cost

cost_1 = logit_cost_func(w1, data, label)

cost_2 = logit_cost_func(w2, data, label)

#-----------------Don't change anything below------------------------#
print('Cost function value with w1:', end=' ')
print(cost_1)
print('Cost function value with w2:', end=' ')
print(cost_2)

Cost function value with w1: 2.16773861630246

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 18/30

Cost function value with w2: 1.6662547928342286

Solution to Problem 2 Part (b) continued:
w2 is better since it has a smaller cost value.

Now, our target is to �nd the associated to the minimum of the cost function (2). You may
remember from your calculus classes how the derivative is used to calculate the minima/maxima
of a function. This is done by obtaining the expression for the derivative, setting it equal to zero,
and then solving for the equation.

However, in the case of the logistic regression cost function, there is no closed form solution to the
equation; rather the equation is solved via an iterative minimization algorithm called the Gradient
Descent. Training may be stopped once the algorithm has su�ciently converged, as measured by
either the amount of change happening to the cost function over successive iterations, or by
prespecifying the number of iterations. The expression for the gradient of the logistic regression
objective function is given below:

where is component of the vector and the j-th component of the i-th training example,
Each gradient descent step performs the following update:

Question: Complete the gradient of cost function and gradient descent function in the below cell.
Use the provided parameters to get the .

Problem 2 (c) Solve the Optimization Problem with Gradient Descent (10pts)

w

= − (− σ()) ,
∂LL(x, y,w)

∂wj

1

N
∑
i=1

N

yi xi xji

wj w xj .xi

= − step × , k = 0, 1, … ,Kwk+1
j wk

j

∂LL(x, y,w)

∂wj

wK

Solution to Problem 2 Part (c)

cancer = load_breast_cancer()
data = cancer.data
label = cancer.target

w0 = np.full(30, 0).reshape(-1, 1) # initial w0
num_epochs = 100 ## K

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 19/30

step_size = 0.0001 ## step size

'''
w_K: ndarray of shape (D, 1)
 The parameter vector that the graident descent ends up with.

'''

#-----------------Don't change anything above------------------------#

def logit_grad(w, X, y):
 """Function computes the gradient of the logistic regression given the w vector,
 the data tensor , and corresponding targets"""

 sigmoid = 1/(1 + np.exp(-np.matmul(X, w)))

 grad = - np.matmul (np.transpose(X), np.subtract(y.reshape((569,1)) , sigmoid)) / (np.

 return grad

def grdient_descent(w0, X, y, num_epochs=20, step=2):
 """Function performs gradient descent to compute optimal w.

 Parameters:

 w0: ndarray of shape (D,),
 initial of parameter vector w.

 X: ndarray of shape (N, D),
 feature tensor of dataset.

 y: ndarray of shape (N,),
 label vector of dataset.

 num_epochs: int,
 integer specifying the number of training epochs for the gradient descent algorithm.

 step: float,
 float specifying the step size in the gradient descent algorithm.

 """
 w = w0
 for epoch in range(num_epochs):

 w = w - step * logit_grad(w, X, y)

 return w

w_K = grdient_descent(w0, data, label, num_epochs, step_size)

#-----------------Don't change anything below------------------------#

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 20/30

print('w^K =', end=' ')
print(w_K)

w^K = [[1.40313887e-02]
 [2.60313493e-02]
 [8.58982139e-02]
 [1.23094663e-01]
 [1.46600927e-04]
 [4.96866080e-05]
 [-7.81343559e-05]
 [-3.99877194e-05]
 [2.76785712e-04]
 [1.09541487e-04]
 [9.18611777e-05]
 [2.08930997e-03]
 [5.39362358e-04]
 [-2.63569439e-02]
 [1.28138963e-05]
 [2.11292384e-05]
 [2.14649083e-05]
 [9.51989286e-06]
 [3.48895113e-05]
 [5.60291184e-06]
 [1.34450299e-02]
 [3.31080278e-02]
 [8.19111429e-02]
 [-9.38451396e-02]
 [1.91528800e-04]
 [5.73558378e-05]
 [-9.93683771e-05]
 [-1.55272368e-05]
 [3.98596043e-04]
 [1.22092229e-04]]

Finally, for the inference phase on the test data, the trained weights are used to compute posterior
probabilities on test examples, which are then classi�ed as belonging to either of the two classes
depending on if the posterior is greater than or less than , as shown below:

In this exercise, you are going to implement your very own Logistic Regression class, with its fit()
and predict() functions, among others. We will work with the breast_cancer dataset (accessed
via load_breast_cancer function in sklearn) as an example, but the class should be able to take
as input any other real valued feature data of any number of features and training examples, and be
able to predict binary classes based on the MLE principle for unseen test data, as well as return the

Problem 2 (d) Logistic Regression Classi�er Implementation (15pts)

0.5

P(y|) = σ()x
test
i wT

x
test
i

= {ŷ
1 P(y|) > 0.5x

test
i

0 otherwise

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 21/30

normalized posterior probabilities. Carefully read the questions below and answer them
appropriately.

i) Complete the sigmoid function. This should be similar to problem 2 (a).

ii) Complete the logit_cost_func function. This should be similar to problem 2 (b).

ii) Complete the logit_grad function. This should be similar to problem 2 (c).

iv) Complete the fit function with gradient descent algorithm. This should be similar to problem 2
(c).

v) Implement the prediction routine elaborated above in the body of the predict function below.
Finally, execute the code cell and describe what you observe.

vi) Assuming you implemented everything correctly, the algorithm should have worked and yet, it
fails to perform decently. The reason for that is the un-normalized and un-scaled training and test
data. Uncomment the line below performing the normalization and execute the code cell again. The
performance should be much better. Interestingly, normalizing the data makes little to no
difference to the performacne of the naive bayes classi�er. Go back to Question 1 and verify this
for yourselves. Why do you think normalization is so vital for Logistic Regression but hardly
matters for Naïve Bayes?

Do not change the function de�nitions for the functions de�ned in the
MyLogisticRegression class template below. They should take inputs and output
results of the form indicated. You are free to add other internal functions and use
them inside the class de�nition as you see convenient. However, that should not
change the external code's structure, nor the shape and form of the outputs returned.
Note: Any variable preceded by the self. keyword gets stored by the class structure
and can be used and changed afterwards inside the class regardless of whether the
function that �rst made it returns it or not.

Solution to Problem 2 Part (d)

from os import waitid
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 22/30

class MyLogisticRegression:
 def __init__(self, X, y):
 """Function intializes the Logistic Regression class.

 Parameters:

 X_train: ndarray of shape (N,D)
 Numpy array containing N training examples, each D dimensional.

 y_train: ndarray of shape (N,)
 Numpy array containing vector of ground truth classes for examples in X_train
 """

 self.X = np.concatenate((X, np.ones((X.shape[0], 1))), axis=1)
 self.y = y
 self.w = np.random.randn(self.X.shape[1],1)

 ## question i
 def sigmoid(self, X, w):
 """Computes sigmoid for given data array X"""

 sigmoid_val = 1 / (1 + np.exp(-np.matmul(X, w)))

 return sigmoid_val

 ## question ii
 # define logistic regression cost function
 def logit_cost_func(self, w, X, y):
 """function computes value of cost function given the w vector, the feature tensor, a
 """

 cost = np.mean(- np.multiply(np.reshape(y, (-1,1)), np.log(1/(1+np.exp(-np.matmul

 return cost

 ## question iii
 # define gradient function
 def logit_grad(self, w, X, y):
 """Function computes the gradient of the logistic regression given the w vector,
 the tensor , and corresponding targets"""

 sigmoid = 1/(1 + np.exp(-np.matmul(X, w)))

 grad = - np.matmul (np.transpose(X), np.subtract(y.reshape((y.shape[0],1)) , sigmoi

 return grad

 ## question iv
 def fit(self, num_epochs=20, step=2):
 """Function performs gradient descent to compute optimal w.

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 23/30

 Parameters:

 num_epochs: int,
 integer specifying the number of training epochs for the gradient descent algorit

 step: float,
 float specifying the step size in the gradient descent algorithm.

 """

 w = self.w

 for epoch in range(num_epochs):
 w = w - step * self.logit_grad(w, self.X, self.y)

 self.w = w

 ## question v
 def predict(self, X):
 """Function computes the normalized posterior probabilities and class predictions for

 Parameters:

 X: ndarray of shape (N,D)
 2D numpy array containing N testing examples having D dimensions each.

 Returns:

 y_pred: ndarray of shape (N,1)
 vector containing class predictions for each of the N training points in X_test.

 probs: ndarray of shape (N,1)
 numpy array containing normalized class posterior probabilities for each of the p

 """
 X = np.concatenate((X, np.ones((X.shape[0], 1))), axis=1)

 probs = self.sigmoid(X, self.w)
 ##TODO # write code to compute posterior probabilities on test data

 y_pred = np.zeros(np.shape(probs))
 y_pred[probs > 0.5] = 1

 return y_pred, probs

#-----------------Don't change anything below------------------------#

define train and test sizes
N_train = 20
N_test = 150 - N_train

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 24/30

load data
cancer = load_breast_cancer()
X, y = cancer.data, cancer.target

Normalize X. Only uncomment for part e
X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, ax

train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=N_test, train_size=N_trai

train model and predict on test data
model = MyLogisticRegression(X_train, y_train)
model.fit(num_epochs = 50, step=2)
y_pred, probs = model.predict(X_test)

compute accuracy
print("Accuracy Score: %.2f" % accuracy_score(y_pred, y_test))

Accuracy Score: 0.91

Solution to Problem 2 Part (d) continued:
vi)

Normalization is done in both Problem 1 and Problem. However, the accuray of Problem 2 (Logistic
Regression) increases more, approximately from ~0.66 to ~0.9, while the accuracy of Problem 1
(Naive Bayes) remains the same.

This is most likely due to the different calculation processes for two classi�ers:

For Naive Bayes, the normalization process will only affect the posterior since the porcess
is posterior / np.sum(posterior) . That said, all data are scaled at the same degree so the
effects on individuals are small. Additionally, the critical factor that affects the accracy will be
the likelihood, which depends on the calculated mean and standard diviation from the
features' actual values, instead of the posterior. Therefore, the accuracy will not change much
here.
For Logistic Regression, the gradient desent process of �nding the cost of determines the
accuracy. The process of normalization will help stablize the gradient desent and will thus
affect the accuracy a lot.

Note: it may take another week before we cover, in lecture, the material that covers this problem.

Problem 3: Performance Evaluation Metrics for Classi�cation Accuracy
(20pts)

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 25/30

Having just implemented two classi�ers and done an initial performance evaluation via the
accuracy score, we now move onto a more thorough and involved performance analysis. Although
the accuracy metric may provide a quick baseline to judge results with, it can be very misleading in
case of imbalanced training datasets, where some classes are dominated by others. Another
performance metric that can be very useful in this case is the Receiver Operating Characterists
(ROC) curve. It is essentially a plot of the True Positive Rate (TPR) against the False Positive Rate
(FPR) for various thresholds on the posterior probabilties predicted by the classi�er. Read the
following questions carefully and answer as appropriate.

Problem 3 (a) (10pts)
In the template code given below, �ll in code to compute the TPRs and FPRs for a given posterior
probability vector and the corresponding vector of ground-truths.

Problem 3 (b) (5pts)
Execute the code to generate a plot of ROC curves for both the logistic regression classi�er and the
Naïve Bayes classi�er for different training set sizes on the breast_cancer dataset. What do you
observe in each individual subplot regarding how the accuracy metric and the roc curve change
relative to the training set size? What do you think is the explanation for this trend? Now compare
the the individual plots to each other. Which classi�er is more robust in the case of limited data on
the breast_cancer dataset?

Problem 3 (c) (5pts)
We are given four classi�ers for which we observe the following cases:

i. Low TPR, Low FPR
ii. Low TPR, High FPR

iii. High TPR, Low FPR
iv. High TPR, High FPR

What does each situation tell us about the respective classi�er? Explain in terms of what you think
the training data distribution might have been and/or the particular predictive nature of the
classi�er.

Solution to Problem 3 Part (a):

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 26/30

def roc(probs, y_test):
 """Function returns TPR and FPR given a vector of probabilities and another
 for ground-truth predictions

 Parameters:

 probs: ndarray of shape (N,1)
 numpy array of normalized posterior porbabilities for each of N examples in a test da

 y_test: ndarray of shape (N,1)
 numpy array containing ground-truth class predictions for each of the N examples in t

 Returns:

 TPR: ndarray of shape (D,1)
 numpy array containing true positive rates for each of the D thresholds applied to th

 FPR: ndarray of shape (D,1)
 numpy array containing false positive rates for each of the D thresholds applied to t
 """
 truely_positive = np.sum(y_test==1)
 truely_negative = np.sum(y_test==0)

 th = np.linspace(-0.1, 1, 1000)

 TPR = np.zeros(np.shape(th)[0])
 FPR = np.zeros(np.shape(th)[0])

 for ii in range(np.shape(th)[0]):
 TPR[ii] = np.sum(np.reshape(np.array(y_test==1), [-1,1]) & np.array(probs > th[ii]))/ t
 FPR[ii] = np.sum(np.reshape(np.array(y_test==0), [-1,1]) & np.array(probs > th[ii]))/ t

 return TPR, FPR

#-----------------Don't change anything below------------------------#

load data
cancer = load_breast_cancer()
X, y = cancer.data, cancer.target

Normalize X
X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, ax

define training set sizes
training_set_sizes = [10, 50, 100]

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 27/30

set up plots
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7))

for train_size in training_set_sizes:

 # define train and test sizes
 N_train = train_size
 N_test = 150 - N_train

 # train-test split
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=N_test, train_size=N_

 # train model and predict on test data
 model = MyLogisticRegression(X_train, y_train)
 model.fit(num_epochs = 50, step=2)
 y_pred, probs = model.predict(X_test)

 # plot ROC for logistic regression
 TPR, FPR = roc(probs, y_test)
 ax1.plot(FPR, TPR, label='Training Size: %d, Accuracy: %.2f'%(train_size, accuracy_score(
 ax1.plot([0,1],[0,1], linestyle='--', color='red')
 ax1.set_xlabel('FPR')
 ax1.set_ylabel('TPR')

 # train model and predict on test data
 model = MyNaiveBayes(X_train, y_train)
 model.fit()
 y_pred, probs = model.predict(X_test)

 # plot ROC for logistic regression
 TPR, FPR = roc(probs[:,1].reshape(-1,1), y_test)
 ax2.plot(FPR, TPR, label='Training Size: %d, Accuracy: %.2f'%(train_size, accuracy_score(
 ax2.plot([0,1],[0,1], linestyle='--', color='red')
 ax2.set_xlabel('FPR')
 ax2.set_ylabel('TPR')

ax1.set_title('Prediction with Logistic Regression')
ax2.set_title('Prediction with Naive Bayes')
ax1.legend()
ax2.legend()
plt.show()

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 28/30

Solution to Problem 3 Part (b):

From both classi�ers, we can see that the accuracy increases as the training size gets larger.

Especially while using the Naive Bayes classi�er, the accuracy improve more obviously
(from 0.81 to 0.92) comparing to Logistic Regression (from 0.87 to 0.9)

Theoretically, a larger data set should also help us make a more accurate estimation
statistically when doing any experimentations or study.

Moreover, since probability distribution depends on sampling and statistics a lot, the
gaussian distribution we used in Naive Bayes would represent the actual data much
better. This could explain why Naive Bayes have a larger increase in accuracy.

Solution to Problem 3 Part (c):
Generally, TPR de�nes how many correct positive results occur among all positive samples
available during the test. FPR, de�nes how many incorrect positive results occur among all
negative samples available during the test. Based on these two facts:

1. Low TPR, Low FPR:

In this case, both the results of true positive and false positive are very few comparing
to the other 2 categories. That said, there is a high chance to get a negative for the
result no matter what's the actual value.

These data points lies at the bottom left corner of the plot.

2. Low TPR, High FPR

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 29/30

In this case, there are more false positive and false negative comparing to the other 2
categories. That is, the false predicted data is the majority of the result. This indicates
that the the classi�er is inaccurate and is doing a really bad job of predicting the actual
data.
This also shows that the training data represents the real world poorly. These models
should be avoided.

This is not shown in the plot.

3. High TPR, Low FPR

In this case, there are more true positive and true negative comparing to the other 2
categories. That is, the true predicted data is the majority of the result. This indicates
that the the classi�er is very percise and is doing a great job of predicting the actual
data.
This also shows that the training data represents the real world well. The model with
High TPR and Low FPR is what we prefered.

These data points lies at the top left side of the plot.

4. High TPR, High FPR

In this case, there are more results of true positive and false positive comparing to the
other 2 categories. That is, the true predicted data is the majority of the result. That
said, there is a high chance to get a positive for the result no matter what's the actual
value.

These data points lies at the top right side of the plot.

2/4/22, 4:02 PM ECE4803-Sp22-HW2_Classification.ipynb - Colaboratory

https://colab.research.google.com/drive/1MBrapvtP4O68oKS9a-2uojEA2xDAxv37?authuser=1#scrollTo=4hg9F4Zb6Dti&printMode=true 30/30

 0s completed at 3:59 PM

