
ECE 4803: Fundamentamentals of Machine Learning (FunML)

Spring 2022

Homework Assignment # 3

Due: Friday, February 18, 2022 @8PM

(grace period) Saturday, February 19, 2022 @5PM

Georgia Institute of Technology

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython notebook. It is designed to be used with Google Colab , but you
may use other tools (e.g., Jupyter Lab) as well.
Make sure that you execute all cells in a way so their output is printed beneath the corresponding cell. Thus, after successfully
executing all cells properly, the resulting notebook has all the questions and your answers.
Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas under Assignments.
Make sure you delete any scratch cells before you export this document as a PDF. Do not change the order of the questions and do
not remove any part of the questions. Edit at the indicated places only.
Rename the PDF according to the format: LastName_FirstName_ECE_4803_sp22_assignment_#.pdf
It is encouraged for you to discuss homework problems amongst each other, but any copying is strictly prohibited and will be subject
to Georgia Tech Honor Code.
Late homework is not accepted unless arranged otherwise and in advance.
Comment on your codes.

Refer to the tutorial and the supplementary/reading materials that are posted on Canvas for lectures 8, 9 to help you with this
assignment.
IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and the part of the problem you are working

on. For example, start your solution for Part (c) of Problem 2 by having the �rst line as:
Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

Better understand the regression algorithms we discussed in class
Experiment those algorithms on multiple datasets
Understand the idea of regularization and the effect it can have in different scenarios
Perform analyses between algorithms.
Advance in your Python knowledge and experience

Assignment Objectives:

Here is a video summarizes how to export Ipythin Notebook into PDF.

[Method1: Print to PDF]
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose [Save as PDF] to export this Ipython
Notebook to PDF for submission.
Note: Sometimes �gures or texts are splited into different pages. Try to tweak the layout by adding empty lines to avoid this effect as
much as you can.

[Method2: colab-pdf script]
The author of that video provided an alternative method that can generate better layout PDF. However, it only works for Ipythin
Notebook without embedded images.
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run the �srt cell, it will ask for google drive
permission. Executing the second cell will generate the PDF �le in your google drive home directory. Make sure you use the correct
path and �le name.

this will link colab with your google drive

from google.colab import drive

drive.mount('/content/drive')

%%

Guide for Exporting Ipython Notebook to PDF:

https://www.youtube.com/watch?v=yXzw9Dd_Na0
https://github.com/brpy/colab-pdf

%%capture

!wget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py

from colab_pdf import colab_pdf

colab_pdf('LastName_FirstName_ECE_4803_sp22_assignment_#.ipynb') ## change path and file name

[Method3: GoFullPage Chrome Extension] (most recommended)
Install the extension and generate PDF �le of the Ipython Notebook in the browser.

Note: Georgia Tech provides a student discount for Adobe Acrobat subscription. Further information can be found here.

In this problem, you will be dealing with a dataset called California Housing. The dataset contains 8 feature attributes: holder income,
house age, average number of rooms, etc. All these 8 feature attributes were obtained for each of the houses that are
included in this dataset. Finally, the dataset includes, for every house, the average house value in units of $100k. Click HERE to learn more
about the dataset.

Problem 1 (a)
Refer to the slides in Lectures 8 and 9, particularly check the way we set up the problem for Linear Regression. In this question, determine

the values for , , the length of the vector , and the dimensions of the matrix . (Note that some of these values depend on the size of
the training set, and in (a) we assume we use all examples for training. Remember that the structure of matrix and the vectore should
account for the bias, the intercept term.)

Problem 1 (b)
Write down the Least Square Cost Function as we de�ned it in lecture. De�ne every variable and parameter you use in this de�nition.

Problem 1 (c)
In class, we derived the solution for the Least Square function. We called the solution Normal Equations. Write down the Normal
Equations solution. Then, check the dimensionalities of all terms in the Normal Equations to make sure they match for the multiplications

of matrices and vectors in the Normal Equations. Explicitly include in your solutions the dimensions and show that they match. (in terms of
 and)

Problem 1 (d)

Problem 1: Least Squares for Linear Regression (20pts)

n = 20, 640

N P θ̂ X

X θ

N P

https://gofullpage.com/
https://faq.oit.gatech.edu/content/adobe-licensing
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing

Problem 1 (d)
Write down the prediction equation you will use to predict the outcome. De�ne every variable and paramter in your equation.

Problem 1 (e)
You are provided below a class template called MyLeastSquares to implement your very own least squares class. In this question, you will
complete the fit function within the class below. Match the inputs and their dimensionalities (and shapes) to what you worked on in the
above (a) - (c). The solution for this part is the code for fit and you have to clearly comment on your code to explain every part of the
code.

Problem 1 (f)
In this part, you will complete the predict() function within the class below. Match the inputs and their dimensionalities (and shapes) to
what you worked on in the above (a) - (e). The solution for this part is the code for predict() and you have to clearly comment on your
code to explain every part of the code.

Problem 1 (g)
Now it is time to run the cell after you complete the above steps to train and predict your Linear regressor on the California Housing
dataset. Hint: The expected training and test errors are in the range to .

Problem 1 (h)
In this part, you will vary the size of the training dataset from to , and compute the MSE on the training data and the MSE in the
testing data. Choose as interval. Plot the two curves on the same plot, where the x-axis is the size of the training dataset and the y-
axis is log of MSE. Describe and explain the underlying trend. Does it make sense? Write well commented code for the analysis and
generate clear, well-labeled plots.

Hint:

Consider the use of numpy.linalg.inv and numpy.matmul functions.

0 100

10 10, 000
200

Solution Problem 1 (a)

Determine the values:

N: it could be up to 20640 (number of data samples), but in the following setup, N=1000

P = 8 (features)

Length of vector = P+1 (bias) = 9 ; it will be a (P+1, 1) vector
Dimension of matrix = (N,P+1) = 1000 x 9 array

θ̂

X

(,) y

These values are obtained with following code:

import numpy as np
from sklearn.datasets import fetch_california_housing

cal_housing = fetch_california_housing()
print('Number of feature is: ' + str(len(cal_housing['feature_names'])))

print('Number of target classes is: ' + str(len(cal_housing['target_names'])))

X = cal_housing.data

print('N = ' + str(np.shape(X)[0]))
print('P = ' + str(np.shape(X)[1]))
print('Length of theta = ' + str(np.shape(X)[1] + 1))
print('Dimension of X = ' + str(np.shape(X)))

Number of feature is: 8
Number of target classes is: 1
N = 20640
P = 8
Length of theta = 9
Dimension of X = (20640, 8)

Solution Problem 1 (b)

Least square cost function:

N: numbers of sample

: the transpose of the estimated coe�cient (weight)
: input samples

: scalar output

L() = (−θ̂ 1
N
∑N

i=1 θ̂
T

xi yi)2

θ̂
T

xi

yi

Solution Problem 1 (c)

Solution Problem 1 (c)

1) Normal Equation:

2) 's Dimension Calculation (row, columns):

 = (N, P+1)
 = (P+1, N) * (N, P+1) = (P+1, P+1)

 = (P+1, P+1) * (P+1, N) = (P+1, N)

 = (P+1, N) * (N, 1) = (P+1, 1) =

Therefore, we conclude that this �t the dimenstion of , which is (P+1, 1) vector

= (X yθ̂ XT)−1XT

θ̂

X

XXT

(XXT)−1XT

(X yXT)−1XT θ̂

θ̂

Solution Problem 1 (d)

: estimated y(output)
: input sample matrix

 = estimated coe�cients

= Xŷ θ̂

ŷ

X

θ̂

Solution Problem 1 (e) (f) (g)

import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

class MyLeastSquares:
 def __init__(self, X_train, y_train):
 """Function stores feature matrix and corresponding target data.

 Parameters:

 X_train: array_like, shape(N,P)

_ y_ , p (,)
 ndarray containing N training examples, each with P feature values.

 y_train: array_like, shape(N,1)
 ndarray containing target values for each of N examples in X_train."""

 self.X_train = X_train
 self.y_train = y_train
 # print(np.shape(X_train))

 def fit(self):
 """Function computes the weight vector theta of shape (P+1, 1) for regression"""

 # append ones for bias
 X = np.concatenate((np.ones((np.shape(self.X_train)[0], 1)), self.X_train), axis=1) ##TODO

 self.theta = np.reshape(np.matmul(np.matmul(np.linalg.inv(np.matmul(np.transpose(X) , X)) , np.transpose(X)) , self.y_

 def predict(self, X_test):
 """Function predicts targets for given X_test.

 Parameters:

 X_test: array_like, shape(N,P)
 ndarray containing N test examples with P features each.

 Returns: array_like, shape(N,1).
 ndarray containing predicted targets of shape (N,1).
 """

 # append ones for bias
 X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1)
 y_pred = np.matmul(X, self.theta)

 return y_pred

#-----------------Don't change anything below------------------------#

load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target

, y _ , _ g

train-test split
n_train = 1000
n_test = X.shape[0] - n_train

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803)

train theta
LS = MyLeastSquares(X_train, y_train)
LS.fit()

test
y_pred = LS.predict(X_test)

evaluate performance
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size))
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size))

MSE on Training Data: 0.440
MSE on Test Data: 8.897

Solution Problem 1 (h)

for part (h)
plot train size vs log MSE

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target

define training set sizes
training_set_sizes = np.linspace(10, 10000, 50).astype(int)

MSE array

y
MSE_training = np.zeros(np.shape(training_set_sizes)[0])
MSE_test = np.zeros(np.shape(training_set_sizes)[0])

counter = 0

for train_size in training_set_sizes:

 # define train and test sizes
 N_train = train_size
 N_test = X.shape[0] - N_train
 # print(N_train)
 # print(N_test)

 current_MSE_training = 0;
 current_MSE_test = 0;

 for ii in range(30):

 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=N_train, test_size=N_test)

 # train theta
 LS = MyLeastSquares(X_train, y_train)
 LS.fit()

 # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
 current_MSE_training = current_MSE_training + np.log(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size
 current_MSE_test = current_MSE_test + np.log(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)

 # Update MSE
 MSE_training[counter] = current_MSE_training / 30
 MSE_test[counter] = current_MSE_test / 30

 counter = counter + 1

PLot

plt.plot(training_set_sizes,MSE_training, label="MSE_training")
plt.plot(training_set_sizes,MSE_test, label="MSE_test")

Add Title
plt.title("log(MSE) vs size of training dataset for both traning and testing data")

Add Axes Labels

plt.xlabel("size of training dataset")
plt.ylabel("log(MSE)")
plt.legend()

Display

plt.show()

The plot for Problem1 (h) make sense since it looks like the Model Validation learning curves:

Training error should start very low when training set is small, and increases as more training data added.
Testing error should start high and decreases as more training data added.

In Linear Regression, and in Regression in general, we deal with features. One of the challegnes arises when a feautre or more is (or are) a
f f f f f

Problem 2: Singular Value Decomposition and Low-rank Approximation (20pts)

linear combination of other features. This is called linearly dependent features and some call it collinearity of features. When this happens,
the resulting matrix is ill-conditioned, which may lead to unstable solutions or even singular matrices. Recall the problem with singular
matrices, we cannot �nd the inverse. The underlying cause of this instability is the very small (or even zero-valued) singular values in the
singular value decomposition (SVD) of the data matrix , stemming from the fact that one or more of its columns happen to be linear

combinations of the other columns. A potential solution around this problem is to reconstruct via a low rank matrix approximation, ,
using only the largest singular values in the original SVD of . This leads to a more stable solution for the regression algorithm than if
used with the original .

For an matrix and a corresponding vectore , the least squares formulation is stated as follows:

where is a parameter vector. We could replace with its SVD to get:

where is an orthogonal matrix (containing the left singular vectors), is an diagonal matrix (containing the
singular values on its main diagonal and zeros elsewhere), and is an orthogonal matrix (containing the right
singular vectors). An -rank approximation of is given as follows, where and :

Replacing by in Equation 2 followed by the inverse, we obtain the following solution for theta:

Check the Linear Algebra Handout and the SVD-Low Rank Approximation Notes in the Course Content Page on Canvas.

Problem 2 (a)
Calculate the SVD for the following Matrix and compare the result from np.linalg.svd . Start with and eigen decomposition. Do not
use any built-in SVD-related functions, but you may use python to obtain any eigenvalue decompositions as needed.

Problem 2 (b)
What is the rank of the following Matrix:

X

X

X X̂

X

X

N × (P + 1) X N × 1 y

Xθ = y, (1)

θ (P + 1) × 1 X

UΣ θ = y,V T (2)

U N × N Σ N × (P + 1)
V (P + 1) × (P + 1)

r X r ≤ N r ≤ P + 1

= U(:, : r) × Σ(: r, : r) × (: r, :)X̂r V T (3)

X X̂r

θÛrΣ̂r V̂
T

r

θ̂

= y,

= y.V̂ rΣ̂
−1
r Û

T

r

(4)

(5)

AAT

A = () .
4
2

2
8

1
−2

⎛ 1 1 0 −1⎞

Problem 2 (c)
Use the rank you calcualted in Part (b) to reconstruct a low-rank version of .

B = .
⎛

⎝
⎜−1

1
−1
1

0
0

1
0

⎞

⎠
⎟

A

Solution Problem 2 (a)

A = np.array([[4, 2, 1],
 [2, 8, -2]])

#-----------------Don't change anything above------------------------#

ATA = np.matmul(np.transpose(A), A) ##TODO

Lambda_A, V_A = np.linalg.eig(ATA) ##TODO

sigmas = np.sqrt(Lambda_A) ##TODO

svd_U_A = np.matmul(A, np.matmul(np.linalg.inv(np.transpose(V_A)), np.linalg.inv(np.diag(sigmas)))) ##TODO
svd_Sigma_A = np.diag(sigmas) ##TODO
svd_V_A = V_A ##TODO

#-----------------Don't change anything below------------------------#
U_A, Sigma_A, V_A_transpose = np.linalg.svd(A, full_matrices=True)

print('Built-in svd:')
print('U_A: \n', np.concatenate((U_A, np.zeros((2, 1))), axis=1))
print('Sigma_A: \n', np.diag(np.append(Sigma_A, 0)))
print('V_A: \n', np.transpose(V_A_transpose))

print('A: \n', U_A@np.diag(np.append(Sigma_A, 0))[:2, :]@V_A_transpose, '\n')

print('Your implementation:')
print('U_A: \n', svd_U_A)
print('Sigma_A: \n', svd_Sigma_A)
print('V_A: \n', svd_V_A)

print('A: \n', svd_U_A@svd_Sigma_A@np.transpose(svd_V_A))

p (, _ _ @ _ g _ @ p p (_ _))

Built-in svd:
U_A:
 [[-0.34845607 -0.93732511 0.]
 [-0.93732511 0.34845607 0.]]
Sigma_A:
 [[8.95425196 0. 0.]
 [0. 3.58069431 0.]
 [0. 0. 0.]]
V_A:
 [[-0.36501927 -0.8524571 -0.37426972]
 [-0.91526496 0.25497803 0.31189143]
 [0.17044351 -0.45640234 0.87329601]]
A:
 [[4. 2. 1.]
 [2. 8. -2.]]

Your implementation:
U_A:
 [[-3.48456074e-01 9.37325111e-01 -5.96046448e-08]
 [-9.37325111e-01 -3.48456074e-01 -2.98023224e-08]]
Sigma_A:
 [[8.95425196e+00 0.00000000e+00 0.00000000e+00]
 [0.00000000e+00 3.58069431e+00 0.00000000e+00]
 [0.00000000e+00 0.00000000e+00 1.83616829e-08]]
V_A:
 [[-0.36501927 0.8524571 -0.37426972]
 [-0.91526496 -0.25497803 0.31189143]
 [0.17044351 0.45640234 0.87329601]]
A:
 [[4. 2. 1.]
 [2. 8. -2.]]

Solution Problem 2 (b)

Since row 2 of B is the multiplication of row 1 of B, the rank of B will be 3-1 = 2, which is also proven in the code below using numpy.

Answer: rank(B) = 2

B = np.array([[1, 1, 0, -1],
 [-1, -1, 0, 1],

 [1, 1, 0, 0]])
B_rank = np.linalg.matrix_rank(B)
print('rank of B: ', B_rank)

rank of B: 2

Solution Problem 2 (c)

Lower rank A Calculations:

Thus,

Using python for calculation:

A = = ()()U2,2S2,2V T
2,2

−0.34845607
−0.93732511

−0.93732511
0.34845607

0
3.58069431

8.95425196
0

⎛

⎝
⎜

−0.36501927
−0.91526496
0.17044351

0.8524571
0.25497803
0.45640234

⎞

⎠
⎟

A = ()4
2

2
8

1
−2

U_A, Sigma_A, V_A_transpose = np.linalg.svd(A, full_matrices=True)

U = U_A
S = np.diag(np.append(Sigma_A, 0))[:2, :]
V = V_A_transpose
print(np.shape(U))

Lower_rank_A = U[:, 0:2]@S[:, 0:2]@V[0:2, :]
print("Lower rank version A: \n", Lower_rank_A)

Lower rank version A:
 [[4. 2. 1.]
 [2. 8. -2.]]

Problem 3: Singular Value Decomposition and Least Squares (20pts)

In this problem, you will be dealing with the diabetes dataset that contains 442 examples and each example originally contains 10
features. However, we modi�ed the dataset by replacing one of the 10 features by new feature that is a simple linear combination of the
other 9 features. This results in a rank-de�cient data matrix . In this problem, you will be repeating the work you did in the Problem 1

where you calcualted the output using Normal Equations. But now instead of using , you will use . Given below is the structure of the
class MySVDLeastSquares . Answer the following questions.

Problem 3 (a)
Write a code that computes the approximation of via SVD and a given rank parameter. Check the numpy library for the proper function
that provides you with SVD.

Problem 3 (b)

Within the class MySVDLeastSquares given below, implement the fit() function that computes the vector via a low-rank approximation
of as depicted in Equation (5) above. The rank is provided/input by the user. Start from your solution for Problem 1 in this Assignment.

Problem 3 (c)
Within the class MySVDLeastSquares given below, implement the predict() function. Start from your solution for Problem 1 in this
Assignment.

Problem 3 (d)
One of the practices in machine learning is to test the performance of Regression by adding noise to the labels and recording the MSE on
both the training and the test data. Then, we plot the histograms of the MSE values. In doing so, we generated two histograms (given
below), where the one on the left is the histogram when we run the code on the origianl full rank and the plot on the right hand side is

when the code is run on the low rank . Comment on these two plots and explain the differences and what you conclude about using

versus .

X

X X̂

X

θ̂

X

X

X̂ X

X̂

Problem 3 (e) [BONUS question - 15 points] Your task in this bonus question is to generate the code that can generate the two plots in (d).

Hints:

Don't forget to set up your problem matrices and vectors while accounting for the bias (i.e., intercept term) within the matrices and
vectors.
Check the functions: numpy.linalg.svd and numpy.linalg.matrix_rank .
Carry out the experiment for a reasonable large number of trials
Fix the random seed in train_test_split function. The randomness should only be in the noise added to .rainyt

Solution Problem 3 (a)(b)(c)

for parts (a), (b), and (c)

from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split

class MySVDLeastSquares:
 def __init__(self, X_train, y_train):

__ __(, _ , y_)
 """Function stores feature matrix and corresponding target data.

 Parameters:

 X_train: array_like, shape(N,P)
 ndarray containing N training examples, each with P feature values.

 y_train: array_like, shape(N,1)
 ndarray containing target values for each of N examples in X_train."""

 self.X_train = X_train
 self.y_train = y_train

 def fit(self, rank):
 """Function computes the weight vector of shape (P+1, 1) for regression via a low rank approximation
 with given rank"""

 # append ones for bias
 X = self.X_train ##TODO

 self.theta = 0 ##TODO

 # My code:

 # append ones for bias
 X = np.concatenate((np.ones((np.shape(X)[0], 1)), X), axis=1) ##TODO

 ## SVD
 U_X, Sigma_X, V_X_transpose = np.linalg.svd(X, full_matrices=True)
 U = U_X

 S = np.diag(Sigma_X, 0)
 # print(Sigma_X)

 V = V_X_transpose

 X = U[:, 0:rank]@S[0:rank, 0:rank]@V[0:rank, :]

 updated_S = np.linalg.inv(S[0:rank, 0:rank])
 updated_S[updated_S > 1e5] = 0

 # truncate S according to the rank
 V = V_X_transpose[0:rank, :]
 U = np.transpose(U[:, 0:rank])
 pseudo_inv_X = np.matmul(np.matmul(np.transpose(V), updated_S), U)

 self.theta = np.reshape(np.matmul(pseudo_inv_X , self.y_train), [-1,1])

 def predict(self, X_test):
 """Function predicts targets for given X_test.

 Parameters:

 X_test: array_like, shape(N,P)
 ndarray containing N test examples with D features each.

 Returns: array_like, shape(N,1).
 ndarray containing predicted targets of shape (N,1).
 """

 # append ones for bias
 X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1)
 ##TODO

 y_pred = np.matmul(X, self.theta)
 ##TODO

 return y_pred

#-----------------Don't change anything below------------------------#

load dataset
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target
X[:,[-1]] = np.sum(X[:,:-1],axis=1,keepdims=True)

train-test split
n_train = 40
n_test = X.shape[0] - n_train

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803)

train theta
LS = MySVDLeastSquares(X_train, y_train)
LS.fit(rank=10)

test
y_pred = LS.predict(X_test)

evaluate performance
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size))
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size))

MSE on Training Data: 3210.214
MSE on Test Data: 3273.707

Solution Problem 3 (d)

The �rst plot using full-rank has a larger MSE values with a wider distribution for both "Traning MSE" and "Test MSE"(overall having a larger
range of error), comparing to the second plot with a lower rank. This is due to the fact that lower rank eliminate the small sigma value in
the matrix taht will contribute to a large error in the case of full rank.S

Solution Problem 3 (e) [bonus]

error = 5 * np.random.rand(1) * np.ones(7)
print(error)

[4.03528518 4.03528518 4.03528518 4.03528518 4.03528518 4.03528518
 4.03528518]

for part (e)

plot MSE histogram of full-rank and low-rank SVD LS under noise
import matplotlib.pyplot as plt

p p pyp p

set up plots
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7))

load dataset
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target
X[:,[-1]] = np.sum(X[:,:-1],axis=1,keepdims=True)

Parameter setup
errors = 50
k = 100
full_rank_MSE_testing = np.zeros(k)
full_rank_MSE_training = np.zeros(k)
low_rank_MSE_testing = np.zeros(k)
low_rank_MSE_training = np.zeros(k)

current_f_test = 0
current_f_train = 0
current_l_test = 0
current_l_train = 0
counter = 0

print(np.random.rand(3))

for ii in range(k):
 # train-test split
 n_train = 40
 n_test = X.shape[0] - n_train

 error = (ii*15) * np.random.rand(1) #* np.ones(np.shape(y)[0])
 # y_new = y + error

 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test)

 y_train += 0.1*np.random.normal(y_train.mean(), 0.5*y_train.std(), size=y_train.shape)

 # train theta
 LS = MySVDLeastSquares(X_train, y_train)
 LS.fit(rank=11)

()

 # # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
 current_f_test = np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size
 current_f_train = np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size

 ###

 # train theta
 LS = MySVDLeastSquares(X_train, y_train)
 LS.fit(rank = 8)

 # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
 current_l_test = np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size
 current_l_train = np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size

 # Calculate MSE
 full_rank_MSE_training[ii] = current_f_train
 full_rank_MSE_testing[ii] = current_f_test
 low_rank_MSE_training[ii] = current_l_train
 low_rank_MSE_testing[ii] = current_l_test
 counter += 1

Plot

the histogram of the data
b = 30

n, bins, patches = ax1.hist(full_rank_MSE_testing, bins=b, color = 'b', label='Testing MSE')
n, bins, patches = ax1.hist(full_rank_MSE_training, bins=b, color = 'r', label='Training MSE')
ax1.legend(prop={'size': 10})

print(full_rank_MSE_training)

n, bins, patches = ax2.hist(low_rank_MSE_testing, bins=b, color = 'b', label='Testing MSE')
n, bins, patches = ax2.hist(low_rank_MSE_training, bins=b, color = 'r', label='Training MSE')

, , p (_ _ _ g, , , g)
ax2.legend(prop={'size': 10})

ax1.set_xlabel('MSE')
ax1.set_ylabel('Frequency')
ax1.set_title('MSE Distribution of Full rank SVD-based Least Square')
ax1.set_xlim(100, 100000)
ax1.set_ylim(0, 20)

ax2.set_xlabel('MSE')
ax2.set_ylabel('Frequency')
ax2.set_title('MSE Distribution of Low rank SVD-based Least Square')
ax2.set_xlim(100, 100000)
ax2.set_ylim(0, 20)

plt.show()

From the plot above, we can see that the MSE with lower rank has a smaller range of MSE for testing data.

Problem 4: Polynomial Features with Linear Least Squares on Multi-Output Regression(20pts)

As the name implies, linear least squares is able to model only linear combinations of its features. In some cases, however, the output may
have a more complex, non-linear relationship with input feature data. A simple way to encode such non-linear relationships into the
framework for linear least squares is to take powers of existing features and introduce them into the original data matrix as new features.
The standard least squares framework is then able to learn weights to assign to these "new" features.

Moverover, we have seen the multiple-output regression in the lecture 8. Instead of having a vector of and , we have a matrix of and

 now. Luckily, our least square Normal equation can extend to this multiple-output regression by replacing and into and
directly.

Consider the problem below, where we arti�cially generate some data, and corresponding non-linear targets as shown below:

where and it has the relationship: and for all .

Problem 4 (a)
You are provided a function called generate_polynomial_features() that takes in and appends to it new features generated by raising
the original feature values to a range of powers, starting from until the speci�ed degree. So calling generate_polynomial_features(X,
degree=3) would for example return:

Complete the function to get this behavior, following the format laid out in the function de�nition. The new feature data is then trained via
np.linalg.lstsq function on the target data. Execute the cell with degree=10 to visualize the prediction superimposed on the ground-truth
targets. Run the cell again, this time with degree=1 (to produce a linear prediction). Which one looks better?

Problem 4 (b)
Suppose we use degree=10 , What is the Normal equation of this polynomial features on multi-output regression? What is the dimension

of ?

Problem 4: Polynomial Features with Linear Least Squares on Multi Output Regression(20pts)

y θ̂ Y

Θ̂ y θ̂ Y Θ̂

X Y

X = , Y = ∀ , ∈ R,

⎡

⎣

⎢⎢⎢⎢

x1

x2

⋮
xN

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

y11

y21

⋮
yN1

y12

y22

⋮
yN2

⎤

⎦

⎥⎥⎥⎥
xi yik (7)

K = 2 = sinh()sin()yi1 xi xi = sin()yi2 xi i = 1 ⋯ N

X

1

X = , ∀ ∈ R.

⎡

⎣

⎢⎢⎢⎢⎢

x1

x2

⋮

xN

x2
1

x2
2

⋮

x2
N

x3
1

x3
2

⋮

x3
N

⎤

⎦

⎥⎥⎥⎥⎥
xi (8)

Θ̂

Problem 4 (c)
You should have been convinced in (a) as to the superiority of polynomial features in better modeling non-linear relationships in data. Does
it make sense to believe that increasing the degree of the features would lead to an even greater improvement in the performance? Let's
�nd out.
Plot the log MSE of the regressor on the arti�cial data with different degrees, starting from to . What do you observe? Does it make
sense? Provide a clear, well labeled plot to accompany your answer.

1 50

Solution Problem 4 (a)

for part (a)

import numpy as np
import matplotlib.pyplot as plt

def gen_nonlinear_X_y():
 """Function generates a non-linear vector function and its indices for use in this question.

 Returns

 X: array_like of shape (Number of samples,1).
 vector of indices used to generate non-linear mapping.

 y: array_like of shape (Number of samples, 1)
 output function vector corresponding to X.
 """

 X = np.linspace(0,2*np.pi, 100).reshape(-1,1) # generate X
 y1 = np.sinh(X) * np.sin(X) + np.random.normal(0, 0.3, X.shape) # generate noisy targets
 y2 = np.sin(X) + np.random.normal(0, 0.15, X.shape)

 y = np.concatenate((y1.reshape(-1, 1), y2.reshape(-1, 1)), axis=1)

 return X,y

#-----------------Don't change anything above------------------------#

def generate_polynomial_features(X, degree):

g _p y _ (, g)
 """Function generates and appends polynomial features of a given
 data array X.

 Parameters

 X: array_like of shape (N, 1)
 input feature data containing N training examples

 degree: int
 integer specifying the degree of the polynomial features
 generated. Must be greater than or equal to 2. default=2

 Returns

 X_poly: array_like of shape (N, power)
 ndarray of polynomial features containing original data plus the powers
 from 2,...,degree.
 """

 ##TODO
 X_poly = np.zeros([np.shape(X)[0], degree])

 for i in range(degree):
 X_poly[:, i:i+1] = np.power(X, i+1)

 return X_poly

X, y = gen_nonlinear_X_y() # generate data
X = generate_polynomial_features(X, degree=10) # generate linear and quadratic features

#-----------------Don't change anything below------------------------#

theta = np.linalg.lstsq(X, y, rcond=None)[0]

y_pred = X @ theta

fig2, (ax3, ax4) = plt.subplots(1,2, figsize=(10, 5))

ax3.scatter(X[:,0], y[:, 0], marker='x', color='red', label='Ground-truth')
ax3.plot(X[:,0], y_pred[:, 0], color='blue', label='Predicted')

p ([,], y_p [,], ,)
ax3.set_xlabel('x')
ax3.set_ylabel('y0')
ax3.set_title('Linear Least Squares with Polynomial Features \n toward y0')
ax3.legend()

ax4.scatter(X[:,0], y[:, 1], marker='x', color='red', label='Ground-truth')
ax4.plot(X[:,0], y_pred[:, 1], color='blue', label='Predicted')
ax4.set_xlabel('x')
ax4.set_ylabel('y1')
ax4.set_title('Linear Least Squares with Polynomial Features \n toward y1')
ax4.legend()

plt.tight_layout()
plt.show()

The prediction of degree=10 looks like a way better �tting than degree=1 .

Solution Problem 4 (b)

Normal Equation:

The length of is degree+1 = 11. Therefore, it will be a 11 by 1 =(11, 1) column vector.

= (𝛟(X 𝛟(X) 𝛟(X yθ̂)T)−1)T

θ̂

Solution Problem 4 (c)

for part (c)

plot degree vs log MSE
import numpy as np
import matplotlib.pyplot as plt

degrees = np.arange(1, 51)

MSE array
MSE_y0 = np.zeros(np.shape(degrees)[0])
MSE_y1 = np.zeros(np.shape(degrees)[0])

k = 50

for n in degrees:
 current_MSE_y0 = 0
 current_MSE_y1 = 0

 for ii in range(k):
 X, y = gen_nonlinear_X_y() # generate data
 X = generate_polynomial_features(X, degree=n) # generate linear and quadratic features
 theta = np.linalg.lstsq(X, y, rcond=None)[0]
 y_pred = X @ theta

 current_MSE_y0 += np.log(np.sum((y_pred[:, 0] - y[:, 0])**2)/y_pred[:, 0].size)
 current_MSE_y1 += np.log(np.sum((y_pred[:, 1] - y[:, 1])**2)/y_pred[:, 1].size)

 MSE_y0[n-1] = current_MSE_y0 / k
 MSE_y1[n-1] = current_MSE_y1 / k

PLot
plt.plot(degrees,MSE_y0+MSE_y1, label="MSE")

Add Title
plt.title("Degree vs log(MSE) of ploynomila features linear least square multi-output regression")

Add Axes Labels

plt.xlabel("degree")
plt.ylabel("log(MSE)")
plt.legend()

Display

plt.show()

This curve with the trend of decreasing then increasing error as the degree goes up is what I expected, since:

As the degrees �rst start increasing, the error decreases since as we observed from Problem 4 (b), high degree does �t the data
better.
However, as the degree goes higher, the problem of over�tting will occur and thus increases the error.

Another method commonly used in many machine learning approaches to regularize limited labeled data problems and prevent over�tting
is Ridge Regression . Ridge Least Squares, as you studied in class, introduced an L-2 norm penalty to the cost function. Among other
things, this leads to the regression algorithm trying to �nd a parameter weight vector with less overall magnitude in hopes that it would
prevent the algorithm to over�t on any one feature of the data. The weight applied to the ridge penalty is something prespeci�ed by the
user.

In this problem, we work with the California Housing dataset provided by the sklearn library. 8 feature attributes were obtained for each
of the houses that are included in this dataset, as well as the average house value in units of $100k. Find more details HERE.

Problem 5 (a)

Problem 5: Regularizing Regression via the Ridge Penalty (20pts)

n = 20, 640

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing

Problem 5 (a)
Refer to slides in Lectures 9, in particular check the way we set up the problem for Ridge Linear Regression. In this part, determine the

values for , , the length of the vector , and the dimensions of the matrix . (Note that some of these values depend on the size of the
training set, and in (a) we assume we use all examples for training. Remember that the structure of matrix and the vectore should
account for the bias, the intercept term.)

Problem 5 (b)
Write down the Ridge Cost Function as we de�ned it in lecture. De�ne every variable and parameter you use in this de�nition.

Problem 5 (c)
In class, we derived the solution for the Ridge Least Square function. We called the solution Normal Equations. Write down the Normal
Equations solution. Then, check the dimensionalities of all terms in the Normal Equations to make sure they match for the multiplications
of matrices and vectors in the Normal Equations. Explicitly include in your solutions the dimensions and show that they match. (in terms of

 and)

Problem 5 (d)
Write down the prediction equation you will use to predict the outcome. De�ne every variable and paramter in your equation. Also, explicitly
state, in words, the quantity that you predicting for the dataset you are working on. Check the diemnsionality of the output and verify it.

Problem 5 (e)
In the code cell below, you are provided a class template called MyRidgeLeastSquares . Complete the fit() and predict() methods as
before to train a regression algorithm for the California Housing dataset in sklearn . Use the normal solution method provide in the
slides. Don't forget to account for the intercept term in the vector!

Problem 5 (f)
You are now required to use this class and practice with various values of the ridge penalty weight using . What happens
when is too low? Too high? Select a value for that works the best for you. Now taking this value, perform a robustness analysis to
various amounts of training data quantities (e.g., etc.) for the Ridge Loss. For each of those quantities, also train and report
the results for the naive Least Squares algorithm you implemented in problem 1. How does the performance compare for both? For high
data quantities? For low data quantities? Provide a comprehensive answer. The answer should be accompanied by clear, good-looking
plots for these analysis. You are encouraged to write your own code for the analysis part. (Note: For very small data sizes, you may get a
singular matrix error when implementing ordinary least squares. Increase the minimum data size in this case and it should go away.)

Problem 5 (g)
Refer to the lecture 9, we cover another regularization called Least Absolute Shrinkage and Selection Operator (Lasso). What is the Lasso
Cost Function as we de�ned it in lecture? What is the difference between Ridge and Lasso Cost Function?

N P θ̂ X

X θ

N P

θ

α = 40Ntrain

α α

10, 20, 50, 80

Problem 5 (h)
In the lecture, we mention Lasso does not have closed-form solution as Normal Equation. Please explain why?

Solution Problem 5 (a)

Determine the values:

N: it could be up to 20640 (number of data samples), but in the following setup, N = 40
P = 8 (features)

Length of vector = P+1 (bias) = 9
Dimension of matrix = (N,P+1) = 40 x 9 array

θ̂

X

Solution Problem 5 (b)

Least square cost function:

N: numbers of sample
: the regression coe�cient (weight) vector
: input sample matrix

: scalar output
: bias factor

L() = (Xθ − y (Xθ − y) + θθ̂ 1
N

)T γ

N
θT

θ

X

y

γ

Solution Problem 5 (c)

1) Normal Equation:
 θ = (X + γI yXT)−1XT

2) 's Dimension Calculation (row, columns):

 = (N, P+1)
 = (P+1, N) * (N, P+1) = (P+1, P+1)

 = (P+1, P+1) * (P+1, N) = (P+1, N)
 = (P+1, N) * (N, 1) = (P+1, 1) =

Therefore, we conclude that this �t the dimenstion of of (P+1, 1)

θ

X

XXT

(X + γIXT)−1XT

(X yXT)−1XT θ

θ

Solution Problem 5 (d)

: estimated y(output), a "N by 1" (N, 1)=(40, 1) matrix
: input sample matrix, a "N by P+1" (N, P+1)=(40, 9) matrix

 = estimated coe�cients, a "P+1 by 1" (P+1,1)=(9, 1) vector

y = Xθ

y

X

θ

Solution Problem 5 (e)

for part (e)

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

class MyRidgeLeastSquares:
 def __init__(self, X_train, y_train, alpha=0):
 """Function stores feature matrix and corresponding target data.

 Parameters:

 X_train: array_like, shape(N,P)
 ndarray containing N training examples, each with D feature values.

 y_train: array_like, shape(N,1)
 ndarray containing target values for each of N examples in X_train.

 alpha: float

p
 float specifying the multiplier of the L2 penalty in Ridge loss"""

 self.X_train = X_train
 self.y_train = y_train
 self.alpha = alpha

 def fit(self):
 """Function computes the weight vector of shape (P+1, 1) for regression"""
 # append ones for bias
 X = np.concatenate((np.ones((np.shape(self.X_train)[0], 1)), self.X_train), axis=1) ##TODO
 # print(np.shape(X))

 XTX = np.matmul(np.transpose(X) , X)
 # print(np.shape(np.linalg.inv(XTX + self.alpha*np.identity(np.shape(XTX)[1]))))

 alpha_I = self.alpha*np.identity(np.shape(XTX)[1])
 first_part = np.matmul(np.linalg.inv(XTX + alpha_I) , np.transpose(X))
 theta = np.matmul(first_part,self.y_train)

 self.theta = np.reshape(theta, [-1,1])
 # print(np.shape(self.theta))
 ##TODO

 def predict(self, X_test):
 """Function predicts targets for given X_test.

 Parameters:

 X_test: array_like, shape(N,P)
 ndarray containing N test examples with P features each.

 Returns: array_like, shape(N,1).
 ndarray containing predicted targets of shape (N,1).
 """
 # append ones for bias
 X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1) ##TODO
 # print(np.shape(X))
 y_pred = np.matmul(X, self.theta) ##TODO

 # print(np.shape(y_pred))

 return y_pred

#-----------------Don't change anything below------------------------#

load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target

X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, axis=0, keepdims=True))

train-test split
n_train = 40
n_test = X.shape[0] - n_train

train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803)

train theta
LS = MyRidgeLeastSquares(X_train, y_train, alpha=0)
LS.fit()

test
y_pred = LS.predict(X_test)

Mycode
print(np.shape(X_test))
print(np.shape(y_pred))
print(np.shape(y_test.reshape(-1, 1)))

evaluate performance
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size))
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size))

MSE on Training Data: 0.267
MSE on Test Data: 4.025

Solution Problem 5 (f)

for part (f)

set up plots
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7))

load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target
X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, axis=0, keepdims=True))

plot different alpha vs test MSE

alpha = np.linspace(0, 1, num=20)

print(np.shape(degrees))

MSE array
MSE_training = np.zeros(np.shape(alpha)[0])
MSE_test = np.zeros(np.shape(alpha)[0])
counter = 0
k = 50

for n in alpha:
 current_MSE_training = 0;
 current_MSE_test = 0;

 # train-test split
 n_train = 40
 n_test = X.shape[0] - n_train

 for ii in range(k):

 # train test split
 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803)

 # train theta
 LS = MyRidgeLeastSquares(X_train, y_train, alpha=n)
 LS.fit()

 # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
current MSE training current MSE training + np log(np sum((LS predict(X train) y train reshape(1 1))**2)/y train size)

 current_MSE_training = current_MSE_training + np.log(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size)
 current_MSE_test = current_MSE_test + np.log(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)

 # Update MSE
 MSE_training[counter] = current_MSE_training / k
 MSE_test[counter] = current_MSE_test / k

 counter = counter + 1

PLot

ax1.plot(alpha,MSE_training, label="MSE_training")
ax1.plot(alpha,MSE_test, label="MSE_test")

Add Title
ax1.set_title('alpha vs log(MSE)')

Add Axes Labels

ax1.set_xlabel("alpha")
ax1.set_ylabel("log(MSE)")
ax1.legend()

print(MSE_test)
best = alpha[1]
print("The best alpha: \n", alpha[1])

plot different train data size vs test MSE under an optimal alpha

load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target

define training set sizes
training_set_sizes = np.linspace(10, 100, 10).astype(int)

MSE array
MSE_training = np.zeros(np.shape(training_set_sizes)[0])
MSE_test = np.zeros(np.shape(training_set_sizes)[0])
MSE_training_no_alpha = np.zeros(np.shape(training_set_sizes)[0])
MSE t t l h (h (t i i t i)[0])

MSE_test_no_alpha = np.zeros(np.shape(training_set_sizes)[0])
current_MSE_training_no_alpha = 0
current_MSE_test_no_alpha = 0

counter = 0

k = 100

for train_size in training_set_sizes:

 # define train and test sizes
 N_train = train_size
 N_test = X.shape[0] - N_train
 # print(N_train)
 # print(N_test)

 current_MSE_training = 0;
 current_MSE_test = 0;
 current_MSE_training_no_alpha = 0
 current_MSE_test_no_alpha = 0

 for ii in range(k):

 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=N_train, test_size=N_test)

 # Calculate with the best alpha

 # train theta
 LS = MyRidgeLeastSquares(X_train, y_train, alpha=best)
 LS.fit()

 # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
 current_MSE_training = current_MSE_training + np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size
 current_MSE_test = current_MSE_test + np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size

 # Calculate with no alpha

 # train theta
 LS = MyRidgeLeastSquares(X_train, y_train, alpha=0)
 LS.fit()

 # test
 y_pred = LS.predict(X_test)

 # Calculate MSE
 current_MSE_training_no_alpha = current_MSE_training_no_alpha + np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_
 current_MSE_test_no_alpha = current_MSE_test_no_alpha + np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size

 # Update MSE
 MSE_training[counter] = current_MSE_training / k
 MSE_test[counter] = current_MSE_test / k
 MSE_training_no_alpha[counter] = current_MSE_training_no_alpha / k
 MSE_test_no_alpha[counter] = current_MSE_test_no_alpha / k

 counter = counter + 1

PLot

ax2.plot(training_set_sizes,MSE_training, label="MSE_training_Ridge")
ax2.plot(training_set_sizes,MSE_test, label="MSE_test_Ridge")
ax2.plot(training_set_sizes,MSE_training_no_alpha, label="MSE_training_LeastSquare")
ax2.plot(training_set_sizes,MSE_test_no_alpha, label="MSE_test_LeastSquare")

Add Title
ax2.set_title('MSE vs size of training dataset for both traning and testing data')

Add Axes Labels

ax2.set_xlabel("size of training dataset")
ax2.set_ylabel("MSE")
ax2.legend()

Display

plt.show()

The best alpha:
 0.05263157894736842

First, from the plot of alpha vs log(MSE), we can see

If is too small, it will be similar to the performance of least square linear regression (without regularization), and the problem of
over�tting will still occur.
If is too big, it will over regularized (or over-�t) and lead to increase in error.

From the plot of robustness analysis of Ridge penalty vs Least square, we can see:

At the very small training dataset, the Least square without penalty term will over �t and lead to a way higher MSE comparing to using
Ridge penalty.
For large-sized training dataset, two models performs similarly.

α

α

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.
 0s completed at 2:32 AM

Solution Problem 5 (g)

Lasso's cost function:

The difference between Ridge and Lasso Regularization is their penalty term,

where Ridge has and Lasso has

L() = (θ − + γ | |θ̂ 1
N
∑N

i=1 xi yi)2 ∑P
i=1 θi

γ

N
∑P

i=1 θ2
i γ | |∑P

i=1 θi

Solution Problem 5 (h)

Lasso does not have closed-form solution as Normal Equation since the L1 regularization term is not differentiable at .γ | |∑P
i=1 θi = 0θj

