
ECE 4803: Fundamentamentals of Machine Learning (FunML)

Spring 2022

Homework Assignment # 3

Due: Friday, February 18, 2022 @8PM

(grace period) Saturday, February 19, 2022 @5PM

Georgia Institute of Technology

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython  notebook. It is designed to be used with Google Colab , but you
may use other tools (e.g., Jupyter Lab) as well.
Make sure that you execute all cells in a way so their output is printed beneath the corresponding cell. Thus, after successfully
executing all cells properly, the resulting notebook has all the questions and your answers.
Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas  under Assignments.
Make sure you delete any scratch cells before you export this document as a PDF. Do not change the order of the questions and do
not remove any part of the questions. Edit at the indicated places only.
Rename the PDF according to the format: LastName_FirstName_ECE_4803_sp22_assignment_#.pdf
It is encouraged for you to discuss homework problems amongst each other, but any copying is strictly prohibited and will be subject
to Georgia Tech Honor Code.
Late homework is not accepted unless arranged otherwise and in advance.
Comment on your codes.

Refer to the tutorial and the supplementary/reading materials that are posted on Canvas  for lectures 8, 9 to help you with this
assignment.
IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and the part of the problem you are working



on. For example, start your solution for Part (c) of Problem 2 by having the �rst line as: 
Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

Better understand the regression algorithms we discussed in class
Experiment those algorithms on multiple datasets
Understand the idea of regularization and the effect it can have in different scenarios
Perform analyses between algorithms.
Advance in your Python  knowledge and experience

Assignment Objectives:

Here is a video summarizes how to export Ipythin Notebook into PDF. 

[Method1: Print to PDF] 
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose [Save as PDF] to export this Ipython
Notebook to PDF for submission.  
Note: Sometimes �gures or texts are splited into different pages. Try to tweak the layout by adding empty lines to avoid this effect as
much as you can.

[Method2: colab-pdf script] 
The author of that video provided an alternative method that can generate better layout PDF. However, it only works for Ipythin
Notebook without embedded images. 
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run the �srt cell, it will ask for google drive
permission. Executing the second cell will generate the PDF �le in your google drive home directory. Make sure you use the correct
path and �le name.

## this will link colab with your google drive 

from google.colab import drive 

drive.mount('/content/drive')

%%

Guide for Exporting Ipython Notebook to PDF:

https://www.youtube.com/watch?v=yXzw9Dd_Na0
https://github.com/brpy/colab-pdf


%%capture 

!wget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py 

from colab_pdf import colab_pdf 

colab_pdf('LastName_FirstName_ECE_4803_sp22_assignment_#.ipynb') ## change path and file name

[Method3: GoFullPage Chrome Extension] (most recommended) 
Install the extension and generate PDF �le of the Ipython Notebook in the browser. 

Note: Georgia Tech provides a student discount for Adobe Acrobat subscription. Further information can be found here.

In this problem, you will be dealing with a dataset called California Housing.  The dataset contains 8 feature attributes: holder income,
house age, average number of rooms, etc. All these 8 feature attributes were obtained for each of the  houses that are
included in this dataset. Finally, the dataset includes, for every house, the average house value in units of $100k. Click HERE to learn more
about the dataset.  

Problem 1 (a) 
Refer to the slides in Lectures 8 and 9, particularly check the way we set up the problem for Linear Regression. In this question, determine

the values for , , the length of the vector , and the dimensions of the matrix . (Note that some of these values depend on the size of
the training set, and in (a) we assume we use all examples for training. Remember that the structure of matrix  and the vectore  should
account for the bias, the intercept term.) 

Problem 1 (b) 
Write down the Least Square Cost Function as we de�ned it in lecture. De�ne every variable and parameter you use in this de�nition.  

Problem 1 (c) 
In class, we derived the solution for the Least Square function. We called the solution Normal Equations.  Write down the Normal
Equations solution. Then, check the dimensionalities of all terms in the Normal Equations to make sure they match for the multiplications

of matrices and vectors in the Normal Equations. Explicitly include in your solutions the dimensions and show that they match. (in terms of
 and )  

Problem 1 (d)

Problem 1: Least Squares for Linear Regression (20pts)
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https://gofullpage.com/
https://faq.oit.gatech.edu/content/adobe-licensing
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing


Problem 1 (d) 
Write down the prediction equation you will use to predict the outcome. De�ne every variable and paramter in your equation.  

Problem 1 (e)  
You are provided below a class template called MyLeastSquares  to implement your very own least squares class. In this question, you will
complete the fit  function within the class below. Match the inputs and their dimensionalities (and shapes) to what you worked on in the
above (a) - (c). The solution for this part is the code for fit  and you have to clearly comment on your code to explain every part of the
code.  

Problem 1 (f)  
In this part, you will complete the predict()  function within the class below. Match the inputs and their dimensionalities (and shapes) to
what you worked on in the above (a) - (e). The solution for this part is the code for predict()  and you have to clearly comment on your
code to explain every part of the code.  

Problem 1 (g)  
Now it is time to run the cell after you complete the above steps to train and predict your Linear regressor on the California Housing
dataset. Hint: The expected training and test errors are in the range  to . 

Problem 1 (h)  
In this part, you will vary the size of the training dataset from  to , and compute the MSE on the training data and the MSE in the
testing data. Choose  as interval. Plot the two curves on the same plot, where the x-axis is the size of the training dataset and the y-
axis is log of MSE. Describe and explain the underlying trend. Does it make sense? Write well commented code for the analysis and
generate clear, well-labeled plots.

Hint:

Consider the use of numpy.linalg.inv  and numpy.matmul  functions.
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Solution Problem 1 (a)

Determine the values:

N: it could be up to 20640 (number of data samples), but in the following setup, N=1000

P = 8  (features)

Length of vector  = P+1 (bias) = 9 ; it will be a (P+1, 1) vector
Dimension of matrix  = (N,P+1) = 1000 x 9  array

θ̂

X



( , ) y

These values are obtained with following code:

import numpy as np 
from sklearn.datasets import fetch_california_housing 

cal_housing = fetch_california_housing() 
print('Number of feature is: ' + str(len(cal_housing['feature_names'])) )  

print('Number of target classes is: ' + str(len(cal_housing['target_names']))) 

X = cal_housing.data 

print('N = ' + str(np.shape(X)[0])) 
print('P = ' + str(np.shape(X)[1])) 
print('Length of theta = ' + str(np.shape(X)[1] + 1)) 
print('Dimension of X = ' + str(np.shape(X))) 

Number of feature is: 8 
Number of target classes is: 1 
N = 20640 
P = 8 
Length of theta = 9 
Dimension of X = (20640, 8) 

Solution Problem 1 (b)

Least square cost function: 

 

N: numbers of sample

: the transpose of the estimated coe�cient (weight)
: input samples

: scalar output
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Solution Problem 1 (c)



Solution Problem 1 (c)

1) Normal Equation: 

2) 's Dimension Calculation (row, columns):  

 = (N, P+1)
 = (P+1, N) * (N, P+1) = (P+1, P+1)

 = (P+1, P+1) * (P+1, N) = (P+1, N)

 = (P+1, N) * (N, 1) = (P+1, 1) = 

Therefore, we conclude that this �t the dimenstion of , which is (P+1, 1) vector

= ( X yθ̂ XT )−1XT
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Solution Problem 1 (d)

 

: estimated y(output)
: input sample matrix

 = estimated coe�cients

= Xŷ θ̂

ŷ

X

θ̂

Solution Problem 1 (e) (f) (g)

import numpy as np 
from sklearn.datasets import fetch_california_housing 
from sklearn.model_selection import train_test_split 

class MyLeastSquares: 
    def __init__(self, X_train, y_train): 
        """Function stores feature matrix and corresponding target data. 
         
        Parameters: 
        ----------- 
        X_train: array_like, shape(N,P) 



_ y_ , p ( , )
            ndarray containing N training examples, each with P feature values. 
             
        y_train: array_like, shape(N,1) 
            ndarray containing target values for each of N examples in X_train.""" 
         
        self.X_train = X_train 
        self.y_train = y_train 
        # print(np.shape(X_train)) 
         
    def fit(self): 
        """Function computes the weight vector theta of shape (P+1, 1) for regression""" 
         
        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(self.X_train)[0], 1)), self.X_train), axis=1) ##TODO 

        self.theta = np.reshape(np.matmul( np.matmul( np.linalg.inv(np.matmul( np.transpose(X) , X)) , np.transpose(X)) , self.y_

         
    def predict(self, X_test): 
        """Function predicts targets for given X_test. 
         
        Parameters: 
        ----------- 
        X_test: array_like, shape(N,P) 
            ndarray containing N test examples with P features each. 
             
        Returns: array_like, shape(N,1). 
            ndarray containing predicted targets of shape (N,1). 
        """ 

        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1)  
        y_pred = np.matmul(X, self.theta) 
         
        return y_pred 
     

#-----------------Don't change anything below------------------------# 

# load dataset 
cali_houses = fetch_california_housing() 
X, y = cali_houses.data, cali_houses.target 



, y _ , _ g

# train-test split 
n_train = 1000 
n_test = X.shape[0] - n_train 

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803) 

# train theta 
LS = MyLeastSquares(X_train, y_train) 
LS.fit() 

# test 
y_pred = LS.predict(X_test) 

# evaluate performance 
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size)) 
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)) 

MSE on Training Data: 0.440 
MSE on Test Data: 8.897 

Solution Problem 1 (h)

# for part (h) 
## plot train size vs log MSE 

import matplotlib.pyplot as plt 
from sklearn.datasets import fetch_california_housing 
from sklearn.model_selection import train_test_split 

# load dataset 
cali_houses = fetch_california_housing() 
X, y = cali_houses.data, cali_houses.target 

# define training set sizes 
training_set_sizes = np.linspace(10, 10000, 50).astype(int) 

# MSE  array 



y
MSE_training = np.zeros(np.shape(training_set_sizes)[0]) 
MSE_test = np.zeros(np.shape(training_set_sizes)[0]) 

counter = 0 

for train_size in training_set_sizes: 
     
    # define train and test sizes
    N_train = train_size 
    N_test = X.shape[0] - N_train 
    # print(N_train) 
    # print(N_test) 

    current_MSE_training = 0; 
    current_MSE_test = 0; 

    for ii in range(30): 

      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=N_train, test_size=N_test) 

      # train theta 
      LS = MyLeastSquares(X_train, y_train) 
      LS.fit() 

      # test 
      y_pred = LS.predict(X_test)

      # Calculate MSE 
      current_MSE_training = current_MSE_training + np.log(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size
      current_MSE_test = current_MSE_test + np.log(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size) 

    # Update MSE 
    MSE_training[counter] = current_MSE_training / 30 
    MSE_test[counter] = current_MSE_test / 30 

    counter = counter + 1 

# PLot 

plt.plot(training_set_sizes,MSE_training, label="MSE_training")  
plt.plot(training_set_sizes,MSE_test, label="MSE_test") 



# Add Title 
plt.title("log(MSE) vs size of training dataset for both traning and testing data")  

# Add Axes Labels 

plt.xlabel("size of training dataset")  
plt.ylabel("log(MSE)")  
plt.legend() 

# Display 

plt.show() 

The plot for Problem1 (h) make sense since it looks like the Model Validation learning curves:

Training error should start very low when training set is small, and increases as more training data added.
Testing error should start high and decreases as more training data added.

In Linear Regression, and in Regression in general, we deal with features. One of the challegnes arises when a feautre or more is (or are) a
f f f f f

Problem 2: Singular Value Decomposition and Low-rank Approximation (20pts)



linear combination of other features. This is called linearly dependent features and some call it collinearity of features. When this happens,
the resulting matrix  is ill-conditioned, which may lead to unstable solutions or even singular matrices. Recall the problem with singular
matrices, we cannot �nd the inverse. The underlying cause of this instability is the very small (or even zero-valued) singular values in the
singular value decomposition (SVD) of the data matrix , stemming from the fact that one or more of its columns happen to be linear

combinations of the other columns. A potential solution around this problem is to reconstruct  via a low rank matrix approximation, ,
using only the largest singular values in the original SVD of . This leads to a more stable solution for the regression algorithm than if
used with the original .

For an  matrix  and a corresponding  vectore , the least squares formulation is stated as follows:

where  is a  parameter vector. We could replace  with its SVD to get:

where  is an  orthogonal matrix (containing the left singular vectors),  is an  diagonal matrix (containing the
singular values on its main diagonal and zeros elsewhere), and  is an  orthogonal matrix (containing the right
singular vectors). An -rank approximation of  is given as follows, where  and :

Replacing  by  in Equation 2 followed by the inverse, we obtain the following solution for theta:

Check the Linear Algebra Handout and the SVD-Low Rank Approximation Notes in the Course Content Page on Canvas.  

Problem 2 (a) 
Calculate the SVD for the following Matrix and compare the result from np.linalg.svd . Start with  and eigen decomposition. Do not
use any built-in SVD-related functions, but you may use python to obtain any eigenvalue decompositions as needed.

Problem 2 (b) 
What is the rank of the following Matrix:

X

X

X X̂

X

X

N × (P + 1) X N × 1 y

Xθ = y, (1)

θ (P + 1) × 1 X

UΣ θ = y,V T (2)

U N × N Σ N × (P + 1)
V (P + 1) × (P + 1)

r X r ≤ N r ≤ P + 1

= U(:, : r) × Σ(: r, : r) × (: r, :)X̂r V T (3)
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Problem 2 (c) 
Use the rank you calcualted in Part (b) to reconstruct a low-rank version of .

B = .
⎛

⎝
⎜−1

1
−1
1

0
0

1
0

⎞

⎠
⎟

A

Solution Problem 2 (a)

A = np.array([[4, 2, 1], 
              [2, 8, -2]]) 

#-----------------Don't change anything above------------------------# 

ATA = np.matmul(np.transpose(A), A) ##TODO 

Lambda_A, V_A = np.linalg.eig(ATA) ##TODO 

sigmas = np.sqrt(Lambda_A) ##TODO 

svd_U_A = np.matmul(A, np.matmul( np.linalg.inv(np.transpose(V_A)), np.linalg.inv(np.diag(sigmas)) )) ##TODO 
svd_Sigma_A = np.diag(sigmas) ##TODO 
svd_V_A = V_A ##TODO 

#-----------------Don't change anything below------------------------# 
U_A, Sigma_A, V_A_transpose = np.linalg.svd(A, full_matrices=True) 

print('Built-in svd:') 
print('U_A: \n', np.concatenate((U_A, np.zeros((2, 1))), axis=1)) 
print('Sigma_A: \n', np.diag(np.append(Sigma_A, 0))) 
print('V_A: \n', np.transpose(V_A_transpose)) 

print('A: \n', U_A@np.diag(np.append(Sigma_A, 0))[:2, :]@V_A_transpose, '\n') 

print('Your implementation:') 
print('U_A: \n', svd_U_A) 
print('Sigma_A: \n', svd_Sigma_A) 
print('V_A: \n', svd_V_A) 

print('A: \n', svd_U_A@svd_Sigma_A@np.transpose(svd_V_A)) 



p ( , _ _ @ _ g _ @ p p ( _ _ ))

Built-in svd: 
U_A:  
 [[-0.34845607 -0.93732511  0.        ] 
 [-0.93732511  0.34845607  0.        ]] 
Sigma_A:  
 [[8.95425196 0.         0.        ] 
 [0.         3.58069431 0.        ] 
 [0.         0.         0.        ]] 
V_A:  
 [[-0.36501927 -0.8524571  -0.37426972] 
 [-0.91526496  0.25497803  0.31189143] 
 [ 0.17044351 -0.45640234  0.87329601]] 
A:  
 [[ 4.  2.  1.] 
 [ 2.  8. -2.]]  

Your implementation: 
U_A:  
 [[-3.48456074e-01  9.37325111e-01 -5.96046448e-08] 
 [-9.37325111e-01 -3.48456074e-01 -2.98023224e-08]] 
Sigma_A:  
 [[8.95425196e+00 0.00000000e+00 0.00000000e+00] 
 [0.00000000e+00 3.58069431e+00 0.00000000e+00] 
 [0.00000000e+00 0.00000000e+00 1.83616829e-08]] 
V_A:  
 [[-0.36501927  0.8524571  -0.37426972] 
 [-0.91526496 -0.25497803  0.31189143] 
 [ 0.17044351  0.45640234  0.87329601]] 
A:  
 [[ 4.  2.  1.] 
 [ 2.  8. -2.]] 

Solution Problem 2 (b)

Since row 2 of B is the multiplication of row 1 of B, the rank of B will be 3-1 = 2, which is also proven in the code below using numpy.

Answer: rank(B) = 2

B = np.array([[1, 1, 0, -1], 
              [-1, -1, 0, 1], 



              [1, 1, 0, 0]]) 
B_rank = np.linalg.matrix_rank(B)
print('rank of B: ', B_rank) 

rank of B:  2 

Solution Problem 2 (c)

Lower rank A Calculations: 

 

Thus, 

Using python for calculation:

A = = ( )( )U2,2S2,2V T
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U_A, Sigma_A, V_A_transpose = np.linalg.svd(A, full_matrices=True) 

U = U_A 
S = np.diag(np.append(Sigma_A, 0))[:2, :] 
V = V_A_transpose 
# print(np.shape(U)) 

Lower_rank_A = U[:, 0:2]@S[:, 0:2]@V[0:2, :] 
print("Lower rank version A: \n", Lower_rank_A) 

Lower rank version A:  
 [[ 4.  2.  1.] 
 [ 2.  8. -2.]] 

Problem 3: Singular Value Decomposition and Least Squares (20pts)



In this problem, you will be dealing with the diabetes  dataset that contains 442 examples and each example originally contains 10
features. However, we modi�ed the dataset by replacing one of the 10 features by new feature that is a simple linear combination of the
other 9 features. This results in a rank-de�cient data matrix . In this problem, you will be repeating the work you did in the Problem 1

where you calcualted the output using Normal Equations. But now instead of using , you will use . Given below is the structure of the
class MySVDLeastSquares . Answer the following questions.  

Problem 3 (a) 
Write a code that computes the approximation of  via SVD and a given rank  parameter. Check the numpy  library for the proper function
that provides you with SVD.

Problem 3 (b)  

Within the class MySVDLeastSquares  given below, implement the fit()  function that computes the  vector via a low-rank approximation
of  as depicted in Equation (5) above. The rank is provided/input by the user. Start from your solution for Problem 1 in this Assignment.

Problem 3 (c) 
Within the class MySVDLeastSquares  given below, implement the predict()  function. Start from your solution for Problem 1 in this
Assignment.

Problem 3 (d) 
One of the practices in machine learning is to test the performance of Regression by adding noise to the labels and recording the MSE on
both the training and the test data. Then, we plot the histograms of the MSE values. In doing so, we generated two histograms (given
below), where the one on the left is the histogram when we run the code on the origianl full rank  and the plot on the right hand side is

when the code is run on the low rank . Comment on these two plots and explain the differences and what you conclude about using 

versus .

X

X X̂

X

θ̂

X

X

X̂ X

X̂



Problem 3 (e) [BONUS question - 15 points] Your task in this bonus question is to generate the code that can generate the two plots in (d).

Hints:

Don't forget to set up your problem matrices and vectors while accounting for the bias (i.e., intercept term) within the matrices and
vectors.
Check the functions: numpy.linalg.svd  and numpy.linalg.matrix_rank .
Carry out the experiment for a reasonable large number of trials
Fix the random seed in train_test_split  function. The randomness should only be in the noise added to .rainyt

Solution Problem 3 (a)(b)(c)

# for parts (a), (b), and (c) 

from sklearn.datasets import load_diabetes 
from sklearn.model_selection import train_test_split 

     
class MySVDLeastSquares: 
    def __init__(self, X_train, y_train): 



__ __( , _ , y_ )
        """Function stores feature matrix and corresponding target data. 
         
        Parameters: 
        ----------- 
        X_train: array_like, shape(N,P) 
            ndarray containing N training examples, each with P feature values. 
             
        y_train: array_like, shape(N,1) 
            ndarray containing target values for each of N examples in X_train.""" 
         
        self.X_train = X_train 
        self.y_train = y_train 
         
    def fit(self, rank): 
        """Function computes the weight vector of shape (P+1, 1) for regression via a low rank approximation 
        with given rank""" 
         
        # append ones for bias 
        X = self.X_train ##TODO 

        self.theta = 0 ##TODO 

        # My code: 

        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(X)[0], 1)), X), axis=1) ##TODO  

        ## SVD 
        U_X, Sigma_X, V_X_transpose = np.linalg.svd(X, full_matrices=True) 
        U = U_X 

        S = np.diag(Sigma_X, 0) 
        # print(Sigma_X) 

        V = V_X_transpose 

        X = U[:, 0:rank]@S[0:rank, 0:rank]@V[0:rank, :] 

        updated_S = np.linalg.inv(S[0:rank, 0:rank]) 
        updated_S[updated_S > 1e5] = 0 



        # truncate S according to the rank 
        V = V_X_transpose[0:rank, :] 
        U = np.transpose(U[:, 0:rank]) 
        pseudo_inv_X = np.matmul(np.matmul(np.transpose(V), updated_S), U)  

        self.theta = np.reshape( np.matmul(pseudo_inv_X , self.y_train), [-1,1])  

    def predict(self, X_test): 
        """Function predicts targets for given X_test. 
         
        Parameters: 
        ----------- 
        X_test: array_like, shape(N,P) 
            ndarray containing N test examples with D features each. 
             
        Returns: array_like, shape(N,1). 
            ndarray containing predicted targets of shape (N,1). 
        """ 

        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1)  
        ##TODO 

        y_pred = np.matmul(X, self.theta)  
        ##TODO 
         
        return y_pred     

#-----------------Don't change anything below------------------------# 

# load dataset 
diabetes = load_diabetes() 
X, y = diabetes.data, diabetes.target 
X[:,[-1]] = np.sum(X[:,:-1],axis=1,keepdims=True)  

# train-test split 
n_train = 40 
n_test = X.shape[0] - n_train 



X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803) 

# train theta 
LS = MySVDLeastSquares(X_train, y_train) 
LS.fit(rank=10) 

# # test 
y_pred = LS.predict(X_test) 

# evaluate performance 
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size)) 
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)) 

MSE on Training Data: 3210.214 
MSE on Test Data: 3273.707 

Solution Problem 3 (d)

The �rst plot using full-rank has a larger MSE values with a wider distribution for both "Traning MSE" and "Test MSE"(overall having a larger
range of error), comparing to the second plot with a lower rank. This is due to the fact that lower rank eliminate the small sigma value in
the  matrix taht will contribute to a large error in the case of full rank.S

Solution Problem 3 (e) [bonus]

error = 5 * np.random.rand(1) * np.ones(7) 
print(error) 

[4.03528518 4.03528518 4.03528518 4.03528518 4.03528518 4.03528518 
 4.03528518] 

# for part (e) 

## plot MSE histogram of full-rank and low-rank SVD LS under noise  
import matplotlib.pyplot as plt 
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# set up plots 
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7)) 

# load dataset 
diabetes = load_diabetes() 
X, y = diabetes.data, diabetes.target 
X[:,[-1]] = np.sum(X[:,:-1],axis=1,keepdims=True)  

# Parameter setup 
errors = 50 
k = 100 
full_rank_MSE_testing = np.zeros(k) 
full_rank_MSE_training = np.zeros(k) 
low_rank_MSE_testing = np.zeros(k) 
low_rank_MSE_training = np.zeros(k) 

current_f_test = 0 
current_f_train = 0 
current_l_test = 0 
current_l_train = 0 
counter = 0 

# print(np.random.rand(3)) 

for ii in range(k): 
    # train-test split 
    n_train = 40 
    n_test = X.shape[0] - n_train 

    error = (ii*15) * np.random.rand(1) #* np.ones(np.shape(y)[0]) 
    # y_new = y  + error 

    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test) 

    y_train += 0.1*np.random.normal(y_train.mean(), 0.5*y_train.std(), size=y_train.shape) 

    # train theta 
    LS = MySVDLeastSquares(X_train, y_train) 
    LS.fit(rank=11) 



( )

    # # test 
    y_pred = LS.predict(X_test) 

    # Calculate MSE 
    current_f_test = np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size 
    current_f_train = np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size 

    #############################################################################################################################

    # train theta 
    LS = MySVDLeastSquares(X_train, y_train) 
    LS.fit(rank = 8) 

    # test 
    y_pred = LS.predict(X_test) 

    # Calculate MSE 
    current_l_test = np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size 
    current_l_train = np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size 

    # Calculate MSE 
    full_rank_MSE_training[ii] = current_f_train  
    full_rank_MSE_testing[ii] = current_f_test  
    low_rank_MSE_training[ii] = current_l_train  
    low_rank_MSE_testing[ii] = current_l_test  
    counter += 1 

############################################################### 
## Plot 

# the histogram of the data 
b = 30 

n, bins, patches = ax1.hist(full_rank_MSE_testing, bins=b, color = 'b', label='Testing MSE') 
n, bins, patches = ax1.hist(full_rank_MSE_training, bins=b, color = 'r', label='Training MSE') 
ax1.legend(prop={'size': 10}) 

# print(full_rank_MSE_training) 

n, bins, patches = ax2.hist(low_rank_MSE_testing, bins=b, color = 'b', label='Testing MSE') 
n, bins, patches = ax2.hist(low_rank_MSE_training, bins=b, color = 'r', label='Training MSE') 
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ax2.legend(prop={'size': 10}) 

ax1.set_xlabel('MSE') 
ax1.set_ylabel('Frequency') 
ax1.set_title('MSE Distribution of Full rank SVD-based Least Square') 
# ax1.set_xlim(100, 100000) 
ax1.set_ylim(0, 20) 

ax2.set_xlabel('MSE') 
ax2.set_ylabel('Frequency') 
ax2.set_title('MSE Distribution of Low rank SVD-based Least Square') 
# ax2.set_xlim(100, 100000) 
ax2.set_ylim(0, 20) 

plt.show() 

From the plot above, we can see that the MSE with lower rank has a smaller range of MSE for testing data.

Problem 4: Polynomial Features with Linear Least Squares on Multi-Output Regression(20pts)



As the name implies, linear least squares is able to model only linear combinations of its features. In some cases, however, the output may
have a more complex, non-linear relationship with input feature data. A simple way to encode such non-linear relationships into the
framework for linear least squares is to take powers of existing features and introduce them into the original data matrix as new features.
The standard least squares framework is then able to learn weights to assign to these "new" features.

Moverover, we have seen the multiple-output regression in the lecture 8. Instead of having a vector of  and , we have a matrix of  and 

 now. Luckily, our least square Normal equation  can extend to this multiple-output regression by replacing  and  into  and 
directly.

Consider the problem below, where we arti�cially generate some data,  and corresponding non-linear targets  as shown below:

where  and it has the relationship:  and  for all .

Problem 4 (a) 
You are provided a function called generate_polynomial_features()  that takes in  and appends to it new features generated by raising
the original feature values to a range of powers, starting from  until the speci�ed degree. So calling generate_polynomial_features(X,
degree=3)  would for example return:

Complete the function to get this behavior, following the format laid out in the function de�nition. The new feature data is then trained via
np.linalg.lstsq  function on the target data. Execute the cell with degree=10  to visualize the prediction superimposed on the ground-truth
targets. Run the cell again, this time with degree=1  (to produce a linear prediction). Which one looks better?

Problem 4 (b) 
Suppose we use degree=10 , What is the Normal equation  of this polynomial features on multi-output regression? What is the dimension

of ?

Problem 4: Polynomial Features with Linear Least Squares on Multi Output Regression(20pts)
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Problem 4 (c) 
You should have been convinced in (a) as to the superiority of polynomial features in better modeling non-linear relationships in data. Does
it make sense to believe that increasing the degree of the features would lead to an even greater improvement in the performance? Let's
�nd out. 
Plot the log MSE of the regressor on the arti�cial data with different degrees, starting from  to . What do you observe? Does it make
sense? Provide a clear, well labeled plot to accompany your answer.

1 50

Solution Problem 4 (a)

# for part (a) 

import numpy as np 
import matplotlib.pyplot as plt 

def gen_nonlinear_X_y(): 
    """Function generates a non-linear vector function and its indices for use in this question. 
     
    Returns 
    ------- 
    X: array_like of shape (Number of samples,1). 
        vector of indices used to generate non-linear mapping. 
         
    y: array_like of shape (Number of samples, 1) 
        output function vector corresponding to X. 
    """ 
     
    X = np.linspace(0,2*np.pi, 100).reshape(-1,1)  # generate X 
    y1 = np.sinh(X) * np.sin(X) + np.random.normal(0, 0.3, X.shape)  # generate noisy targets 
    y2 = np.sin(X) + np.random.normal(0, 0.15, X.shape) 

    y = np.concatenate((y1.reshape(-1, 1), y2.reshape(-1, 1)), axis=1) 

    return X,y 

     
#-----------------Don't change anything above------------------------# 

def generate_polynomial_features(X, degree): 
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    """Function generates and appends polynomial features of a given 
    data array X. 
     
    Parameters 
    ---------- 
    X: array_like of shape (N, 1)
        input feature data containing N training examples 
         
    degree: int 
        integer specifying the degree of the polynomial features 
        generated. Must be greater than or equal to 2. default=2 
         
    Returns 
    ------- 
    X_poly: array_like of shape (N, power) 
        ndarray of polynomial features containing original data plus the powers 
        from 2,...,degree. 
    """ 
     
    ##TODO 
    X_poly = np.zeros([np.shape(X)[0], degree]) 

    for i in  range(degree): 
      X_poly[:, i:i+1] = np.power(X, i+1) 
     
    return X_poly 

X, y = gen_nonlinear_X_y()  # generate data 
X = generate_polynomial_features(X, degree=10) # generate linear and quadratic features 

#-----------------Don't change anything below------------------------# 

theta = np.linalg.lstsq(X, y, rcond=None)[0] 

y_pred = X @ theta 

fig2, (ax3, ax4) = plt.subplots(1,2, figsize=(10, 5)) 

ax3.scatter(X[:,0], y[:, 0], marker='x', color='red', label='Ground-truth') 
ax3.plot(X[:,0], y_pred[:, 0], color='blue', label='Predicted') 
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ax3.set_xlabel('x') 
ax3.set_ylabel('y0') 
ax3.set_title('Linear Least Squares with Polynomial Features \n toward y0') 
ax3.legend() 

ax4.scatter(X[:,0], y[:, 1], marker='x', color='red', label='Ground-truth') 
ax4.plot(X[:,0], y_pred[:, 1], color='blue', label='Predicted') 
ax4.set_xlabel('x') 
ax4.set_ylabel('y1') 
ax4.set_title('Linear Least Squares with Polynomial Features \n toward  y1') 
ax4.legend() 

plt.tight_layout() 
plt.show() 

The prediction of degree=10  looks like a way better �tting than degree=1  .

Solution Problem 4 (b)



Normal Equation: 

The length of  is degree+1 = 11. Therefore, it will be a 11 by 1  =(11, 1) column vector.

= (𝛟(X 𝛟(X) 𝛟(X yθ̂ )T )−1 )T

θ̂

Solution Problem 4 (c)

# for part (c) 

# plot degree vs log MSE 
import numpy as np 
import matplotlib.pyplot as plt 

degrees = np.arange(1, 51) 

# MSE  array 
MSE_y0 = np.zeros(np.shape(degrees)[0]) 
MSE_y1 = np.zeros(np.shape(degrees)[0]) 

k = 50 

for n in degrees: 
  current_MSE_y0 = 0 
  current_MSE_y1 = 0 

  for ii in range(k): 
    X, y = gen_nonlinear_X_y()  # generate data 
    X = generate_polynomial_features(X, degree=n) # generate linear and quadratic features 
    theta = np.linalg.lstsq(X, y, rcond=None)[0] 
    y_pred = X @ theta 

    current_MSE_y0 += np.log(np.sum((y_pred[:, 0] - y[:, 0])**2)/y_pred[:, 0].size) 
    current_MSE_y1 += np.log(np.sum((y_pred[:, 1] - y[:, 1])**2)/y_pred[:, 1].size) 

   
  MSE_y0[n-1] = current_MSE_y0 / k 
  MSE_y1[n-1] = current_MSE_y1 / k 



# # PLot 
plt.plot(degrees,MSE_y0+MSE_y1, label="MSE")  

# Add Title 
plt.title("Degree vs log(MSE) of ploynomila features linear least square multi-output regression")  

# Add Axes Labels 

plt.xlabel("degree")  
plt.ylabel("log(MSE)")  
plt.legend() 

# Display 

plt.show() 



This curve with the trend of decreasing then increasing error as the degree goes up is what I expected, since:

As the degrees �rst start increasing, the error decreases since as we observed from Problem 4 (b), high degree does �t the data
better.
However, as the degree goes higher, the problem of over�tting will occur and thus increases the error.

Another method commonly used in many machine learning approaches to regularize limited labeled data problems and prevent over�tting
is Ridge Regression . Ridge Least Squares, as you studied in class, introduced an L-2 norm penalty to the cost function. Among other
things, this leads to the regression algorithm trying to �nd a parameter weight vector with less overall magnitude in hopes that it would
prevent the algorithm to over�t on any one feature of the data. The weight applied to the ridge penalty is something prespeci�ed by the
user.

In this problem, we work with the California Housing  dataset provided by the sklearn  library. 8 feature attributes were obtained for each
of the  houses that are included in this dataset, as well as the average house value in units of $100k. Find more details HERE.

Problem 5 (a)

Problem 5: Regularizing Regression via the Ridge Penalty (20pts)

n = 20, 640

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing


Problem 5 (a) 
Refer to slides in Lectures 9, in particular check the way we set up the problem for Ridge Linear Regression. In this part, determine the

values for , , the length of the vector , and the dimensions of the matrix . (Note that some of these values depend on the size of the
training set, and in (a) we assume we use all examples for training. Remember that the structure of matrix  and the vectore  should
account for the bias, the intercept term.)

Problem 5 (b) 
Write down the Ridge Cost Function as we de�ned it in lecture. De�ne every variable and parameter you use in this de�nition.

Problem 5 (c) 
In class, we derived the solution for the Ridge Least Square function. We called the solution Normal Equations.  Write down the Normal
Equations solution. Then, check the dimensionalities of all terms in the Normal Equations to make sure they match for the multiplications
of matrices and vectors in the Normal Equations. Explicitly include in your solutions the dimensions and show that they match. (in terms of

 and )

Problem 5 (d) 
Write down the prediction equation you will use to predict the outcome. De�ne every variable and paramter in your equation. Also, explicitly
state, in words, the quantity that you predicting for the dataset you are working on. Check the diemnsionality of the output and verify it.

Problem 5 (e) 
In the code cell below, you are provided a class template called MyRidgeLeastSquares . Complete the fit()  and predict()  methods as
before to train a regression algorithm for the California Housing  dataset in sklearn . Use the normal solution method provide in the
slides. Don't forget to account for the intercept term in the  vector!

Problem 5 (f) 
You are now required to use this class and practice with various values of the ridge penalty weight  using . What happens
when  is too low? Too high? Select a value for  that works the best for you. Now taking this value, perform a robustness analysis to
various amounts of training data quantities (e.g.,  etc.) for the Ridge Loss. For each of those quantities, also train and report
the results for the naive Least Squares algorithm you implemented in problem 1. How does the performance compare for both? For high
data quantities? For low data quantities? Provide a comprehensive answer. The answer should be accompanied by clear, good-looking
plots for these analysis. You are encouraged to write your own code for the analysis part. (Note: For very small data sizes, you may get a
singular matrix error when implementing ordinary least squares. Increase the minimum data size in this case and it should go away.)

Problem 5 (g) 
Refer to the lecture 9, we cover another regularization called Least Absolute Shrinkage and Selection Operator (Lasso). What is the Lasso
Cost Function as we de�ned it in lecture? What is the difference between Ridge and Lasso Cost Function?

N P θ̂ X

X θ

N P

θ

α = 40Ntrain

α α

10, 20, 50, 80



Problem 5 (h) 
In the lecture, we mention Lasso does not have closed-form solution as Normal Equation. Please explain why?

Solution Problem 5 (a)

Determine the values:

N: it could be up to 20640 (number of data samples), but in the following setup, N = 40
P = 8  (features)

Length of vector  = P+1 (bias) = 9
Dimension of matrix  = (N,P+1) = 40 x 9  array

θ̂

X

Solution Problem 5 (b)

Least square cost function:  

N: numbers of sample
: the regression coe�cient (weight) vector
: input sample matrix

: scalar output
: bias factor

L( ) = (Xθ − y (Xθ − y) + θθ̂ 1
N

)T γ

N
θT

θ

X

y

γ

Solution Problem 5 (c)

1) Normal Equation: 
 θ = ( X + γI yXT )−1XT



2) 's Dimension Calculation (row, columns):  

 = (N, P+1)
 = (P+1, N) * (N, P+1) = (P+1, P+1)

 = (P+1, P+1) * (P+1, N) = (P+1, N)
 = (P+1, N) * (N, 1) = (P+1, 1) = 

Therefore, we conclude that this �t the dimenstion of  of (P+1, 1)

θ

X

XXT

( X + γIXT )−1XT

( X yXT )−1XT θ

θ

Solution Problem 5 (d)

: estimated y(output), a "N by 1" (N, 1)=(40, 1)  matrix
: input sample matrix, a "N by P+1" (N, P+1)=(40, 9)  matrix

 = estimated coe�cients, a "P+1 by 1" (P+1,1)=(9, 1)  vector

y = Xθ

y

X

θ

Solution Problem 5 (e)

# for part (e) 

from sklearn.datasets import fetch_california_housing 
from sklearn.model_selection import train_test_split 

class MyRidgeLeastSquares: 
    def __init__(self, X_train, y_train, alpha=0): 
        """Function stores feature matrix and corresponding target data. 
         
        Parameters: 
        ----------- 
        X_train: array_like, shape(N,P) 
            ndarray containing N training examples, each with D feature values. 
             
        y_train: array_like, shape(N,1) 
            ndarray containing target values for each of N examples in X_train. 
         
        alpha: float 



p
            float specifying the multiplier of the L2 penalty in Ridge loss""" 
         
        self.X_train = X_train 
        self.y_train = y_train 
        self.alpha = alpha 
         
    def fit(self): 
        """Function computes the weight vector of shape (P+1, 1) for regression""" 
        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(self.X_train)[0], 1)), self.X_train), axis=1) ##TODO 
        # print(np.shape(X)) 

        XTX = np.matmul( np.transpose(X) , X) 
        # print(np.shape(np.linalg.inv( XTX + self.alpha*np.identity(np.shape(XTX)[1])))) 

        alpha_I = self.alpha*np.identity(np.shape(XTX)[1]) 
        first_part = np.matmul(np.linalg.inv(XTX + alpha_I) , np.transpose(X)) 
        theta = np.matmul(first_part,self.y_train) 

        self.theta = np.reshape(theta, [-1,1]) 
        # print(np.shape(self.theta)) 
        ##TODO 

    def predict(self, X_test): 
        """Function predicts targets for given X_test. 
         
        Parameters: 
        ----------- 
        X_test: array_like, shape(N,P) 
            ndarray containing N test examples with P features each. 
             
        Returns: array_like, shape(N,1). 
            ndarray containing predicted targets of shape (N,1). 
        """ 
        # append ones for bias 
        X = np.concatenate((np.ones((np.shape(X_test)[0], 1)), X_test), axis=1)  ##TODO 
        # print(np.shape(X)) 
        y_pred = np.matmul(X, self.theta)   ##TODO 

        # print(np.shape(y_pred))
         
        return y_pred 
     



#-----------------Don't change anything below------------------------# 

# load dataset 
cali_houses = fetch_california_housing() 
X, y = cali_houses.data, cali_houses.target 

X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, axis=0, keepdims=True)) 

# train-test split 
n_train = 40 
n_test = X.shape[0] - n_train 

# train test split 
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803) 

# train theta 
LS = MyRidgeLeastSquares(X_train, y_train, alpha=0) 
LS.fit() 

# test 
y_pred = LS.predict(X_test) 

# Mycode 
# print(np.shape(X_test)) 
# print(np.shape(y_pred)) 
# print(np.shape(y_test.reshape(-1, 1))) 

# evaluate performance 
print('MSE on Training Data: {:0.3f}'.format(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size)) 
print('MSE on Test Data: {:0.3f}'.format(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)) 

MSE on Training Data: 0.267 
MSE on Test Data: 4.025 

Solution Problem 5 (f)

# for part (f)



# set up plots
fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7))

# load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target
X = (X - np.min(X, axis=0, keepdims=True)) / (np.max(X, axis=0, keepdims=True) - np.min(X, axis=0, keepdims=True))

# plot different alpha vs test MSE

alpha = np.linspace(0, 1, num=20)

# print(np.shape(degrees))

# MSE  array
MSE_training = np.zeros(np.shape(alpha)[0])
MSE_test = np.zeros(np.shape(alpha)[0])
counter = 0
k = 50

for n in alpha:
  current_MSE_training = 0;
  current_MSE_test = 0;

  # train-test split
  n_train = 40
  n_test = X.shape[0] - n_train

  for ii in range(k):

    # train test split
    X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=n_train, test_size=n_test, random_state=4803)

    # train theta
    LS = MyRidgeLeastSquares(X_train, y_train, alpha=n)
    LS.fit()

    # test
    y_pred = LS.predict(X_test)

    # Calculate MSE
current MSE training current MSE training + np log(np sum((LS predict(X train) y train reshape( 1 1))**2)/y train size)



    current_MSE_training = current_MSE_training + np.log(np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size)
    current_MSE_test = current_MSE_test + np.log(np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size)

  # Update MSE
  MSE_training[counter] = current_MSE_training / k
  MSE_test[counter] = current_MSE_test / k

  counter = counter + 1

# PLot

ax1.plot(alpha,MSE_training, label="MSE_training") 
ax1.plot(alpha,MSE_test, label="MSE_test")

# Add Title
ax1.set_title('alpha vs log(MSE)') 

# Add Axes Labels

ax1.set_xlabel("alpha") 
ax1.set_ylabel("log(MSE)") 
ax1.legend()

# print( MSE_test)
best = alpha[1]
print("The best alpha: \n", alpha[1])

# plot different train data size vs test MSE under an optimal alpha

# load dataset
cali_houses = fetch_california_housing()
X, y = cali_houses.data, cali_houses.target

# define training set sizes
training_set_sizes = np.linspace(10, 100, 10).astype(int)

# MSE  array
MSE_training = np.zeros(np.shape(training_set_sizes)[0])
MSE_test = np.zeros(np.shape(training_set_sizes)[0])
MSE_training_no_alpha = np.zeros(np.shape(training_set_sizes)[0])
MSE t t l h ( h (t i i t i )[0])



MSE_test_no_alpha = np.zeros(np.shape(training_set_sizes)[0])
current_MSE_training_no_alpha = 0
current_MSE_test_no_alpha = 0

counter = 0

k = 100

for train_size in training_set_sizes:
    
    # define train and test sizes
    N_train = train_size
    N_test = X.shape[0] - N_train
    # print(N_train)
    # print(N_test)

    current_MSE_training = 0;
    current_MSE_test = 0;
    current_MSE_training_no_alpha = 0
    current_MSE_test_no_alpha = 0

    for ii in range(k):

      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=N_train, test_size=N_test)

      # Calculate with the best alpha

      # train theta
      LS = MyRidgeLeastSquares(X_train, y_train, alpha=best)
      LS.fit()

      # test
      y_pred = LS.predict(X_test)

      # Calculate MSE
      current_MSE_training = current_MSE_training + np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_train.size
      current_MSE_test = current_MSE_test + np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size

      # Calculate with no alpha

      # train theta
      LS = MyRidgeLeastSquares(X_train, y_train, alpha=0)
      LS.fit()



      # test
      y_pred = LS.predict(X_test)

      # Calculate MSE
      current_MSE_training_no_alpha = current_MSE_training_no_alpha + np.sum((LS.predict(X_train) - y_train.reshape(-1, 1))**2)/y_
      current_MSE_test_no_alpha = current_MSE_test_no_alpha + np.sum((y_pred - y_test.reshape(-1, 1))**2)/y_pred.size

    # Update MSE
    MSE_training[counter] = current_MSE_training / k
    MSE_test[counter] = current_MSE_test / k
    MSE_training_no_alpha[counter] = current_MSE_training_no_alpha / k
    MSE_test_no_alpha[counter] = current_MSE_test_no_alpha / k

    counter = counter + 1

# PLot

# ax2.plot(training_set_sizes,MSE_training, label="MSE_training_Ridge") 
ax2.plot(training_set_sizes,MSE_test, label="MSE_test_Ridge")
# ax2.plot(training_set_sizes,MSE_training_no_alpha, label="MSE_training_LeastSquare") 
ax2.plot(training_set_sizes,MSE_test_no_alpha, label="MSE_test_LeastSquare")

# Add Title
ax2.set_title('MSE vs size of training dataset for both traning and testing data') 

# Add Axes Labels

ax2.set_xlabel("size of training dataset") 
ax2.set_ylabel("MSE") 
ax2.legend()

# Display

plt.show() 



The best alpha:  
 0.05263157894736842 

First, from the plot of alpha vs log(MSE), we can see

If  is too small, it will be similar to the performance of least square linear regression (without regularization), and the problem of
over�tting will still occur.
If  is too big, it will over regularized (or over-�t) and lead to increase in error.

From the plot of robustness analysis of Ridge penalty vs Least square, we can see:

At the very small training dataset, the Least square without penalty term will over �t and lead to a way higher MSE comparing to using
Ridge penalty.
For large-sized training dataset, two models performs similarly.

α

α
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Solution Problem 5 (g)

Lasso's cost function: 

 

The difference between Ridge and Lasso Regularization is their penalty term, 

where Ridge has  and Lasso has 

L( ) = ( θ − + γ | |θ̂ 1
N
∑N

i=1 xi yi)2 ∑P
i=1 θi

γ

N
∑P

i=1 θ2
i γ | |∑P

i=1 θi

Solution Problem 5 (h)

Lasso does not have closed-form solution as Normal Equation since the L1 regularization term  is not differentiable at .γ | |∑P
i=1 θi = 0θj


