Georgia Institute of Technology
ECE 4803: Fundamentamentals of Machine Learning (FunML)
Spring 2022
Homework Assignment # 4

Due: Friday, March 11, 2022 @8PM

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython notebook. It is designed to be used with Google Colab, but you may
use other tools (e.g., Jupyter Lab) as well.
Make sure that you execute all cells in a way so their output is printed beneath the corresponding cell. Thus, after successfully executing

all cells properly, the resulting notebook has all the questions and your answers.

Print a PDF copy of the notebook with all its outputs printed and submit the PDF on canvas under Assignments.

Make sure you delete any scratch cells before you export this document as a PDF. Do not change the order of the questions and do not
remove any part of the questions. Edit at the indicated places only.

Rename the PDF according to the format: LastName_FirstName_ECE_4803_sp22_assignment_#.pdf

It is encouraged for you to discuss homework problems amongst each other, but any copying is strictly prohibited and will be subject to
Georgia Tech Honor Code.

Late homework is not accepted unless arranged otherwise and in advance.

Comment on your codes.

Refer to the tutorial and the supplementary/reading materials that are posted on canvas for lectures 11, 12, 13 to help you with this
assignment.

IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and the part of the problem you are working on.
For example, start your solution for Part (c) of Problem 2 by having the first line as:

Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

Assignment Objectives:

Understand the intuition behind various clustering algorithms discussed in class
Connect concepts related to different clustering algorithms

Implement and evaluate clustering techniques

Implement clustering algorithms on real world datasets

~ Guide for Exporting Ipython Notebook to PDF:

Here is a video summarizes how to export Ipythin Notebook into PDF.

[Method1: Print to PDF]

After you run every cell and get their outputs, you can use [File] -> [Print] and then choose [Save as PDF] to export this Ipython Notebook
to PDF for submission.

Note: Sometimes figures or texts are splited into different pages. Try to tweak the layout by adding empty lines to avoid this effect as much
as you can.

[Method2: colab-pdf script]

The author of that video provided an alternative method that can generate better layout PDF. However, it only works for Ipythin Notebook
without embedded images.

How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run the fisrt cell, it will ask for google drive
permission. Executing the second cell will generate the PDF file in your google drive home directory. Make sure you use the correct path
and file name.

this will link colab with your google drive
from google.colab import drive

drive.mount('/content/drive")

%%capture
!wget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py

from colab_pdf import colab_pdf
colab_pdf('LastName_FirstName_ECE_4803_sp22_assignment_#.ipynb') ## change path and file name

» [Method3: GoFullPage Chrome Extension] (most recommended)
Install the extension and aenerate PDF file of the Ipvthon Notebook in the browser.

~ Problem 1: K-Means and Gaussian Mixture Models (GMMs) on a Toy Example (20pts)

Suppose we are given a dataset with 5 training examples, each with two features as shown below.

Datapoint (x;) Feature 1 Value (x;;) Feature 2 Value (X;2)

1 0 0
2 2.5 1.5
3 0.5 0.5
4 0.75 1.5
5 0 i

In this problem, you will be running the K-means and the GMM clustering algorithms on this dataset step by step to gain an insight into the
algorithms.
(a)
In this part, you will run the K-means clustering algorithm on the data above for two iterations. Fill out the tables below for each iteration.
Follow the steps highlighted in Lecture 11 (21-Feb-2022) Page 34 of the PDF where five steps are listed. The difference is that you do not have a
convergence criterion but instead you will stop after the second iteration. Use k = 2 clusters. Initialize the centroids using the following mean
values, u; = [0, O]T and up = [0.75, 1.5}T respectively. You may do the intermediate calculations on scratch paper using either a calculator
or a computer program, but do your best to understand every step.
Write down the values for the distances of each of the datapoint from the means in each iteration and the resulting cluster assingments in the
tables, respectively.
The point distances are calculated using the following formula:

llx; — g3

The cluster assingments are obtained as below:

argmin ||x; — uy||3
3

Provide also the means after each iteration. (all numbers round to at least 4 decimals.)

(b)

With the dataset above, you will use GMM in this part to determine the clustering assignment.

Use K = 2 clusters. Use the same initializations for the means, u; = [0, 0]7 and uz = [0.75, 1.5]7, respectively. Run 2 iterations of the
GMM algorithm. Assume the initial priors to be equal, i.e., p(uy, £5) = 0.5. Assume that the initial covariance matrices X, to be 2 x 2
identity matrices. Refer to Lecture 13 (28-MArch-2022) Page 18-19.

Fill in the table below after for each iteration. You may do the intermediate calculations on scratch paper using either a calculator or a computer
program, but please show how you get the numbers. Provide the class assignments, in addition to the means and covariance matrices for the
two mixtures in each iteration.

The posterior for the datapoint x; is obtained using the following formula:
p(ug, Br) X N (%55, B,)
S p(ag, S) x N (%55 ug, 3i)

where p(ug, 3) is the prior for k-th mixture, V' (x;; uy,, Z.) is the multivariate normal distribution given as following:

exp(— 5 (xi — w) Ty (x —)

plug, Ty [x;) =

N (xi5 0, 5) =

1
JE

(all numbers round to at least 4 decimals.)

Problem 1 (a) Solution

First iteration:
. . "
Point Distances ||x; — uy |3 Class Assignments argimn fli — w3 Class Means u;,

Datapoint (x;) Distance from u; Distance from u, Datapoint (x;) Cluster Assignment (10r2) K-Means Parameters

il 0 2.8125 1 il Mean Cluster 1 (u;) [0.25,0.25]

Datapoint (x;) Distance fromu; Distance from uy Datapoint (x;) Cluster Assignment (1 or 2)

K-Means Parameters

2 8.5 3.0625 2 2
3 0.5 1.0625 3 1
4 2.8125 0 4 2
5 1 0.8125 5 2
Second iteration:
Point Distances [[x; — uy “g Class Assignments arginin |l — w3

Datapoint (x;) Distance fromu, Distance from uz Datapoint (x;) Cluster Assignment (1 or 2)

1 0.125 2.9514 1 1
2 6.625 2.0347 2 2
3 0.125 1.0347 3 1
4 1.8125 0.1389 4 2
5 0.625 1.2847 5 1

Problem 1(a)

print("1st Iteration:")

x = np.array([[e,e],[2.5,1.5],[@.5,8.5],[0.75,1.5],[@,1]])
ul = np.array([e,@])

u2 = np.array([@.75, 1.5])

distl = np.linalg.norm(x - ul, axis=1) ** 2
print("Distance 1: \n", distl)

dist2 = np.linalg.norm(x - u2, axis=1) ** 2
print("Distance 2: \n", dist2)

ul_new = np.array([(x[@,:]+x[2,:]1)/2])
print(“Mean Cluster 1: \n",ul_new)

u2_new = np.array([(x[1,:]+x[3,:]1+x[4,:1)/3])
print(“Mean Cluster 2: \n",u2_new)

print("\n")

print(“2nd Iteration:")

distl = np.linalg.norm(x - ul_new, axis=1) ** 2
print("Distance 1: \n", distl)

dist2 = np.linalg.norm(x - u2_new, axis=1) ** 2
print("Distance 2: \n", dist2)

ul_new = np.array([(x[@,:]+x[2,:]+x[4,:])/3])

Mean Cluster 2 {uy)

[1.0833,1.3333]

Class Means u;

K-Means Parameters

Mean Cluster 1 (u;)

Mean Cluster 2 (uz)

[0.1667, 0.5]
[1.625,1.5]

print("Mean Cluster 1: \n",ul_new)
u2_new = np.array([(x[1,:]1+x[3,:])/2])
print("Mean Cluster 2: \n",u2_new)

1st Iteration:

Distance 1:

[e. 8.5 0.5 2.8125 1.]
Distance 2:

[2.8125 3.0625 1.0625 0. 0.8125]

Mean Cluster 1:

[[0.25 0.25]]
Mean Cluster 2:
[[1.08333333 1.33333333]]

2nd Iteration:
Distance 1:
[0.125 6.625 ©.125 1.8125 0.625]
Distance 2:
[2.95138889 2.03472222 1.03472222 ©.13888889 1.28472222]
Mean Cluster 1:
[[0.16666667 0.5 11
Mean Cluster 2:
[[1.625 1.5 1]

~ Problem 1 (b) Solution

First iteration:
Point Posteriors p(uy, Xy, |x;) Cluster Assignment arginaxp(uk, Tk |xi) GMM Parameters (1., X)

GMM Parameters

Datapoint Posterior Mixture 1 Posterior Mixture 2 Datapoint (x;) Cluster Assignment (1 or 2)

Cluster 1 prior 0.4217
1 0.8032 0.1968
J i Mean Cluster 1 (uy) [0.2786, 0.5453]
2 0.0619 0.9381 2 2
Covariance Cluster 1 (X) [0.2260, 0.1308; 0.1308, 0.2724]
3 0.5699 0.4301 3 il
Cluster 2 prior 0.5783
4 0.1968 0.8032 4 2
Mean Cluster 2 (uy) [1.0938, 1.1586]
5 0.4766 0.5234 5 2]

Covariance Cluster 2 (X5) [1.0248, 0.2990; 0.2990, 0.2306]

Second iteration:
Point Posteriors p(u, £ |x;) Cluster Assignment arg:nax plug, Dy [x;) GMM Parameters (u;,, X ;)

GMM Parameters

Datapoint Posterior Mixture 1 Posterior Mixture 2 Datapoint (x;) Cluster Assi (1or2) Cluster 1 prior 0.4972
1 0.9414 0.0586
1 1 Mean Cluster 1 (u;) [0.2537,0.5397]
2 0.0000 0.9999 2 2
Covariance Cluster 1 (X) [0.0884, 0.0931; 0.0931,0.2763]
3 0.7485 0.2515 3 1
Cluster 2 prior 0.0938
4 0.3421 0.6879 4 2
Mean Cluster 2 (uz) [1.2412,1.2566]
5 0.4549 0.5451 5 2

Covariance Cluster 2 (£2) [1.1187,0.2522; 0.2522,0.1475]

x = np.array([[e,e],[2.5,1.5],[@.5,8.5],[@.75,1.5],[@,1]])
ul = np.array([e,e])

u2 = np.array([@.75, 1.5])

pl = 8.5

p2 = 8.5

sigma = np.eye(2)

print("First Iteration: ")

N1 = np.zeros((5,1))

N2 = np.zeros((5,1))

for i in range(5):
N1[i,0]=(np.exp(-@.5* np.reshape((x[i,:]-ul),[1,-1]) @ np.linalg.inv(sigma) @ np.transpese(np.reshape((x[i,:]-ul),[1,-1]))) / np.sqr
N2[i,@]=(np.exp(-0.5% np.reshape((x[i,:]-u2),[1,-1]) @ np.linalg.inv(sigma) @ np.transpose(np.reshape((x[i,:]-u2),[1,-1]))) / np.sqr

post_1=p1*N1/(p1*N1+p2*N2)
post_2=p2*N2/(pl*N1+p2*N2)

print("Posterior 1: \n", post_1.T)

print("Posterior 2: \n", post_2.T)

pl = np.mean(post_1)

print("Prior 1: ", pl)

p2 = np.mean(post_2)

print("Prior 2: ", p2)

ul = np.array([np.sum(post_1*np.reshape(x[:,8],[-1,1]))/np.sum(post_1), np.sum(post_1*np.reshape(x[:,1],[-1,1]))/np.sum(post_1)])
print("Mean 1: ", ul)

u2 = np.array([np.sum(post_2*np.reshape(x[:,0],[-1,1]))/np.sum(post_2), np.sum(post_2*np.reshape(x[:,1],[-1,1]))/np.sum(post_2)])
print("Mean 2: ", u2)

sigl = np.array([[e,0],[@,8]])

for i in range(5):
arr = np.transpose((np.reshape(x[i,:],[1,-1])-ul)) @ (np.reshape(x[i,:],[1,-1])-ul)
sigl = sigl + post_1i[i]*arr/np.sum(post_1)

print("Sigma 1: \n", sigl)

sig2 = np.array([[©,0],[@,08]])

for i in range(5):
arr = np.transpose((np.reshape(x[i,:],[1,-1])-u2)) @ (np.reshape(x[i,:],[1,-1])-u2)
sig2 = sig2 + post_2[i]*arr/np.sum(post_2)

print("Sigma 2: \n", sig2)

print("\nSecond Iteration: ")

N1 = np.zeros((5,1))

N2 = np.zeros((5,1))

for i in range(5):
N1[i,@]=(np.exp(-0.5* np.reshape((x[i,:]-ul),[1,-1]) @ np.linalg.inv(sigl) @ np.transpose(np.reshape((x[i,:]-ul),[1,-1]))) / np.sqrt
N2[i,0]=(np.exp(-0.5* np.reshape((x[i,:]-u2),[1,-1]) @ np.linalg.inv(sig2) @ np.transpose(np.reshape((x[i,:]-u2),[1,-11))) / np.sqgrt

post_1=p1*N1/(p1*N1+p2*N2)
post_2=p2*N2/(p1*N1+p2*N2)
print("Posterior 1: \n", post_1.T)
print("Posterior 2: \n", post_2.T)

pl = np.mean(post_1)

print("Prior 1: *, pl)

p2 = np.mean(post_2)

print("Prior 2: ", p2)

ul = np.array([np.sum(post_1*np.reshape(x[:,8],[-1,1]))/np.sum(post_1), np.sum(post_1*np.reshape(x[:,1],[-1,1]))/np.sum(post_1)])
print("Mean 1: ", ul)

u2 = np.array([np.sum(post_2*np.reshape(x[:,8],[-1,1]))/np.sum(post_2), np.sum(post_2*np.reshape(x[:,1],(-1,1]))/np.sum(post_2)])
print("Mean 2: ", u2)

sigl = np.array([[@,0],[@,0]])

for i in range(5):
arr = np.transpose((np.reshape(x[i,:],[1,-1])-ul)) @ (np.reshape(x[i,:],[1,-1])-ul)
sigl = sigl + post_1[i]*arr/np.sum(post_1)

print("Sigma 1: \n", sigl)

sig2 = np.array([[e,0],[@,8]])

for i in range(5):
arr = np.transpose((np.reshape(x[i,:],[1,-1])-u2)) @ (np.reshape(x[i,:],[1,-1])-u2)
sig2 = sig2 + post_2[i]*arr/np.sum(post_2)

print("Sigma 2: \n", sig2)

First Iteration:

Posterior 1:

[[©.8031738 @.86187599 0.56985265 ©.1968262 0.47657965]]
Posterior 2:

[[©.1968262 ©.93812401 0.43014735 ©.8831738 ©.52342035]]
Prior 1: ©.42166165764829523

Prior 2: ©.5783383423597048
Mean 1: [@.27853419 @.54525198]
Mean 2: [1.09374179 1.15864382]
Sigma 1:

[[©.22593353 @.13878544]

[@.13@78544 @.27240954]]
Sigma 2:

[[1.02478674 8,2989791]

[0.2989791 ©.23062963]]

Second Iteratien:
Posterior 1:
[[9.41403262e-81 4.83736941e-05 7.48491912e-01 3.42113080e-01
4,54943313e-01]]
Posterior 2:
[[©.85859674 8.99995163 ©.25150809 ©.65788692 8.54505669]]
Prior 1: ©.4973999882726206
Prior 2: ©.5026008117273793
Mean 1: [@.25369993 @.53977945]
Mean 2: [1.24116523 1.25649362]
Sigma 1:
[[0.08837617 8.093127 |
[6.093127 @.27636215]]
Sigma 2:
[[1.11873526 @.25219025]
[0.25219025 @.1474754]]

~ Problem 2: K-Means vs GMMs for Modeling Non-Spherical Distributions (15pts)

K-means is good when finding clusters of data sampled from gaussian distributions with zero correlation (and ideally equal variances in all
feature directions). In cases where this is not true (i.e., gaussian distributions have correlated features and/or unequal variances), GMMs tend
to perform superior to K-means, as you will hopefully see in this question.

As seen in Problem 1 above, running both K-means and GMMs requires the setup of an $N\times K$ dimensional table for each iteration,
storing the point distances to the indiviudal cluster means for the former and point posteriors for the latter. SN$ refers to the number of training
examples while SK$ is the number of clusters. The un-normalized posterior for the $is-th datapeint having mean and covariance
S\mathbf{u}_{k}$ and Σ_{k} is given as:

\begin{align} p(\mathbf{u}_{k},\Sigma_{k}\,|\mathbf{x}_{i}) &= \overbrace{p(\mathbf{u}_{k},\Sigma_{k})}*{\text{prior for mixture }k}\times
\overbrace{p(\mathbf{x}_{i}\mathbf{u}_{k} \Sigma_{k})}*{\text{likelihood for f\mathbf{x}_{i\text{ given mxiture }k} \tag{4} \\ \\
p(\mathbf{u}_{k},\Sigma_{k}\,\mathbf{x}_{i}) &= p(\mathbf{u}_{k}\Sigma_{k}) \times \mathcal{N}(\mathbf{x}_{i};\mathbf{u}_{k},\Sigma_{k}),
\tag{5} \end{align}

where $\mathcal{N}(\mathbf{x}_{i};\mathbf{u}_{k} \Sigma_{k})$ is the multivariate normal distribution characterized by mean \mathbf{u}_{k}
and covariance Σ_{k} and

$8\mathcal{N}(\mathbf{x}_{i};\mathbf{u}_{k}\Sigma_{k}) = \frac{1}{\sqrt{(2\pi){P}\Sigmal}\text{exp}(-\frac{1H{2}(\mathbf{x} -
\mathbf{u}){TASigma*{-1}(\mathbf{x} - \mathbf{u})) \tag{6}$$

(a)

If we want to normalize Equation 4, what is the formula of denominator? After normalization, what is the range for normalized posterior?

(b)

As we have seen in Regression, it is often more convenient to compute these values in the natural log scale. In this part, take the log of both
sides of Equation 4. Write down the resulting equation below.

(c)

Plug Equation 6 into the equation you derived in part (b). Simplify and write down a fully expanded expression for
S\text{logh,p(\mathbf{u}_{k} \Sigma_{k}\,\mathbf{x}_{i})$.

(d)

Considering the expression in part (c), it is possible to simplify the expression to represent K-means. In other words, K-means can be a special
case of GMM. Explain exactly under what constraints and changes, if any, on the prior, means, covariance matrices, and the update process
does this statement become true, i.e., K-means is a sepcial case of GMM.

(e)

The code below generates some data sampled from two $2-D$ gaussian distributions with different means and covariance matrices.

Using the sklearn.cluster.KMeans class for K-means and sklearn.mixture.GaussianMixture class for GMMs, set up a class object for each

to run for 2 clusters on this data. Describe the results. Which one of K-means and GMMs captures the original distribution better? How do
you relate this to what you explained in part (d)?

Note: To discount the effect of random initialization, you might have to execute the cell multiple times to get a consistent idea of the results.
Problem 2 (a) Solution

» Denominator = Zlep{uk, ¥k) % p(xi;ug, L) for equation 4
e The range of normalized postirior will be in 0 ~ 1.

Problem 2 (b) Solution

+ Code + Text

log p(ug, ¥y [x;) = log(p(ug, Bg) x p(xi; ug, Br)) = log(p(ug, X)) + log(p(xi; ug, Xi))

Problem 2 (c) Solution

log p(ug, Xy [x;) = log(p(ug, Bx)) + log(N (x;; g, T)) = log(p(uy, X)) + log((2:)P|£:| exp(—3(x —)T (x — u)))

Therefore,
log p(ug, Bz |x;) = log(p(ug, Br)) — 0.5 * (log((27)%) + log|B|) — 5 (x —)’ T (x — u)

Problem 2 (d) Solution

v Problem 2 (d) Solution

¢ KMeans is a hard-assignment version of GMM that has an identity covariance since it is only looking at the fix distances between points.
¢ GMM weight the distances by multiplying the Gaussian distribution of different covariances and thus will provide a more accurate
prediction.

v Problem 2 (e) Solution

From the plot below we can see that GMM has a better performance of outlining the correct Gaussian distribution. This matches our
observation at Problem 2(d) of KMeans having a fix covariance and will be less accurate.

Do not change this cell. This a helper cell. Please execute it.

imports and utlity functions

import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

import torch

from itertools import cycle

from sklearn import metrics

from sklearn.metrics.pairwise import euclidean_distances
from sklearn.datasets import load_iris, load_wine
import random

from skimage import data, color

generate colors for clustering via python generator
SIS & (0% 9% o9, 9%, oP, Gy, o0
color_generator = cycle(colors)

helper functions

evaluation metrics

Dunn Index
from the resource: https://en.wikipedia.org/wiki/Cluster_analysis
the distance between two clusters can be any of the measurements, i.e. distance between centroids or any points.

def delta(ck, cl):
values = np.ones([len(ck), len(cl)]) * np.finfo(np.float32).max
for i in range(len(ck)):
for j in range(len(cl)):
values[i, j] = np.linalg.norm(ck[i] - c1[j])

return np.min(values)

de

+

big_delta(ci):
values = np.zeros([len(ci), len(ci)])

for i in range(@, len(ci)):
for j in range(@, len(ci)):
values[i, j] = np.linalg.norm(ci[i] - <i[3j])

return np.max(values)

Dunn Index
def dunn_index(X, cluster_labels):
A list containing a numpy array for each cluster
k_list[k] is np.array([N, p]) (N : number of samples in cluster k, p : sample dimension)
k_list = []
for k in np.unique(cluster_labels):
k_list.append(X[cluster_labels == k])

deltas = np.ones([len(k_list), len(k_list)]) * np.finfo(np.float32).max
big_deltas = np.zeros([len(k_list), 1])
1_range = list(range(®, len(k_list)))
for k in 1_range:
for 1 in (1_range[@:k] + 1_range[k + 1:]):
deltas[k, 1] = delta(k_list[k], k_list[1])
big_deltas[k] = big_delta(k_list[k])

B L LT o F e e N T L L ETRY

UL S NP ILIUELLES) [IP.IEA ULE_uEitd>)

return di

de

+

delta_fast(ck, cl, distances):

values = distances[np.where(ck)][:, np.where(cl)]
values = values[np.nonzero(values)]

return np.min(values)

def big_delta_fast(ci, distances):

values = distances[np.where(ci)][:, np.where(ci)]

return np.max(values)

de

“+

dunn_index_fast(X, cluster_labels):

"""Dunn Index - fast(using sklearn pairwise euclidean_distance function
X: np.array

np.array([N,p] of all samples

cluster_labels: np.array

np.array([N,]) labels of all samples

distances = euclidean_distances(X)

ks = np.sort(np.unique(cluster_labels))

deltas = np.cnes([len(ks), len(ks)]) * np.finfo(np.float32).max
big_deltas = np.zeros({[len(ks), 1])
1_range = list((range(@, len(ks))))

for k in 1_range:
for 1 in (1_range[®@:k] + 1_range[k+1:]):
deltas[k, 1] = delta_fast((cluster_labels==ks[k]), (cluster_labels==ks[1]), distances)

big_deltas[k] = big_delta_fast(cluster_labels == ks[k], distances)
di = np.min(deltas) / np.max(big_deltas)

return di

Cluster Purity

aer purlty_score(laveis_True, lavbeis_preaj:
compute contingency matrix
contingency_matrix = metrics.cluster.contingency_matrix(labels_true, labels_pred)

return np.sum(np.amax(contingency_matrix, axis=@)) / np.sum(contingency matrix)

for Problem 2 (e)

from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

mu_1 = np.array([@8,0])

mu_2 = np.array([e,0])

covl = np.array([[1.95, 1],[1, ©.5]])
theta = np.radians(3@)

c, s = np.cos(theta), np.sin(theta)

R = np.array(((c, -s), (s, €)))

X_1 = np.random.multivariate_normal(mu_1, covl, 56@)

X_2 = X_1.dot(R) - np.array([2,0]).reshape(1,-1)

X = np.concatenate((X_1, X_2), axis=0)

X = (X - X.mean(axis=@)) / X.std(axis=8@)

print(np.shape(X))

model_kmeans = KMeans(n_clusters=2, random_state=8) ##TODO
model_gmms = GaussianMixture(n_components=2, random_state=08) ##TODO
y_pred_kmeans = model_kmeans.fit_predict(X)

y_pred_gmms = model_gmms.fit_predict(X)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 5))

for cluster_id, color in zip(range(2), color_generator):
data_x = X[y_pred_kmeans==cluster_id,@]
data_y = X[y_pred_kmeans==cluster_id,1]
axl.scatter(data_x, data_y, color = color, label='Class {}'.format(cluster_id))
ax1.legend()
ax1.set_xlabel('Feature 1")
axl.set_ylabel('Feature 2")
ax1l.set_title('Kmeans')

Far Frinetan id ¢ in 7infranoafl?Y ralor csnaratar) -

L B T Uk - T PR ST TR
data_x = X[y_pred_gmms==cluster_id,@]
data_y = X[y_pred_gmms==cluster_id,1]
ax2.scatter(data_x, data_y, color = ¢, label="Class {}'.format(cluster_id))
ax2.legend()
ax2.set_xlabel('Feature 1")
ax2.set_ylabel('Feature 2")
ax2.set_title('GMMs')

plt.show()

[» /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: RuntimeWarning: covariance is not positive-semidefinite.
if sys.path[@] == '":

Kmeans GMMs
4 e Class0 41 @ Class0 ‘.
Class 1 @ Class1
2 2
~ L ~ L
o 0
v ® o
2 2 -
"]
i fid
-2 -2
. 3]
- . - .
H :
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 o 1 2 3
Feature 1 Feature 1

Problem 3: Implement K-Means (20pts)

In this problem, you are going to design a python class that implements the k-means algorithm. You are provided with a class template called
MyKmeans that you have to fill in to implement various stages in the k-means workflow. Follow the steps outlined in the parts below to answer
the question.

(a)

The initialization function in the class stores the training data (X_train), the number of clusters (k), and the number of iterations to run the k-
means algorithm for (num_iter). The first step in the algorithm entails randomly selecting $k$$Sk$ data points in X_train to be the centroids,
one for each cluster. Fill in code for the class function __init_means() below to do this. The output should be stored into the self.means
variable to be used later in the fitting stage. Pay attention to the shape of this array.

(b)

Implement the fit_predict() function in the class definition by writing code to execute the Assignment and Update steps, as described in
Page 34 of lecture 11. For each iteration, the assignment step involves computing the euclidean distance of each data pointin X_train to each
of the $kSSk$ centroids selected in part(a) above. The result is essentially an $N\times K$$SN\times K$ dimensional table where each column
stores the euclidean distance of all data points to the centroid corresponding to the column. This is used to compute the cluster label for each
datapoint by choosing the centroid (where centroid label $\in[1,K]$$\in[1,K]$) corresponding to the smallest distance, resulting in a $N\times
1$$N\times 18 array.

(c)
Next, implement the Update step, where the SN\times 1$$N\times 1$ label vector just created in part (b) is used to recompute the means for
each of the $k$$Sk$ centroids, and thus update the self.means structure. Refer to Page 34 in Lecture 11 (21-Feb-2022) for the details.

Execute the cell once you have completed all of the above to classify the Iris dataset you used in homework 1 using two preselected features.
You may have to run the cell multiple times to discount the effect of random initialization and get consistent results.

Plot the clustering results when using features $0$$0$ and $28$2$.

Problem 3 (a)(b)(c) Solution

from sklearn.metrics import davies_bouldin_score, mutual_info_score, adjusted_rand_score

class MyKMeans:
def __init_ (self, X_train, k, num_iter=20):

Parameters
X_train: ndarray of shape (number of samples, num of features).
Training data array.

k: int,
number of clusters.

num_iter:int
number of steps to run algorithm for.

self.X_train = X_train
self.k = k
self.num_iter = num_iter

def __init_means(self):

initialize means as an ndarray of shape (k, num of features).
part (a)

ind = random.sample(range(®, self.X_train.shape[@]), self.k)
print(ind)
self.means = self.X_train[ind]

HATODO

def fit_predict(self):
""*Runs the k means algorithm.

Returns
y_pred: ndarray of shape (num of samples, 1)
array of predicted cluster labels for each data point.

self.__init_means() # initialize means
for iteration in range(self.num_iter): # begin the algorithm
assignment step

part (b)
#H#TODO

label = np.zeros(np.shape(self.X_train)[e])

for n in range(np.shape(self.X_train)[@]):
X = np.reshape(self.X_train[n,:],[1,-1])
dist = np.linalg.norm(x - self.means, axis=1)
label[n] = np.argmin(dist)

update means step

part (c)

#H#TODO

label = label.astype(int)
count = np.zeros((1,self.k))
k = self.k

for id in range(k):
count[@,id] = np.sum(label==id)
new_means = []

for j in range(self.k):
new_means.append(np.sum(self.X_train[label==j, :], axis = @) / count[®,j])
self.means = np.asarray(new_means)

Final class assignments
part (c)
label = np.zeros(np.shape(self.X_train)[@])
for n in range(np.shape(self.X_train)[@]):
x = np.reshape(self.X_train[n,:],[1,-1])
dist = np.linalg.norm(x - self.means, axis=1)
label[n] = np.argmin(dist)
y_pred = label.astype(int) ##TODO

return y_pred

k means parameters

k=3

num_iter = 2@

feature_nums = [@8,2] # features to use

load and preprocess the dataset
dataset = load_iris()

X, y = dataset.data, dataset.target

X = (X - X.mean(axis=@)) / X.std(axis=8)
X = X[:,feature_nums]

fit the model
kmeans = MyKMeans(X, k=k, num_iter=num_iter)
y_pred = kmeans.fit_predict()

plot data
fig, ax = plt.subplots()

for cluster_id in range(k):
data_x = X[y_pred==cluster_id,@]
data_y = X[y_pred==cluster_id,1]
ax.scatter(data_x, data_y, color = next(color_generator), label='Class {}'.format(cluster_id))
ax.legend()

plt.xlabel('Feature {}'.format(feature_nums[@]))
plt.ylabel('Feature {}'.format(feature_nums[1]))
plt.show()

print('Davies Bouldin Score: {:0.4f}'.format(davies_bouldin_score(X, y_pred)))
print('Dunn Index: {:8.4f}'.format(dunn_index(X, y_pred)))

print('Mutual Information Score: {:0.4f}'.format(mutual_info_score(y, y_pred)))
print('Rand Index: {:8.4f}'.format(adjusted_rand_score(y, y_pred)))
print('Purity Score: {:0.4f}'.format(purity_score(y, y_pred)))

& ® Class0 o
151 @ Class1 ®e o .
® Class2 o o
10 *ge Yo
3

Feature 2

-2 -1 0 1 2
Feature 0
Davies Bouldin Score: 8.6373
Dunn Index: ©.0672
Mutual Information Score: @.6401
Rand Index: ©.5634
Purity Score: @.8067

~ Problem 4: Implementing Gaussian Mixture Models (20pts)

In this problem, you will create a MycMMs class that implements clustering using Gaussian Mixture Models (GMM). The class intialization
function stores the training data array, X_train, the prespecified number of mixtures, k, and the number of iterations, num_iteratons. The
means and covariances of the $k$$k$-th cluster and the posteriors structure have already been initalized inthe __init_params() function.
Read every question very carefully before you start your solution.

(a)

Expectation Step: The analogue of the $N\times K$$N\times K$ dimesnional cluster distances table created in Problem 1 (b) above is the
posteriors structure in GMMs. The entries $\gamma_{ik}$$\gamma_{ik}$ in this table store the (unnormalized) posterior probabilities of the
parameters of the Sk$$kS$-th mixture given a datapoint $\mathbf{x}_{i}$$\mathbf{x}_{i}$ (i.e., $\gamma_{ik} =
p(\mathbf{u}_{k},\Sigma_{k}\,\mathbf{x}_{i))$$\gamma_{ik} = p(\mathbf{u}_{k},\Sigma_{k}\.|\mathbf{x}_{i)$). Using the expression you derived
in problem 2 (b), fill in the fit_predict() function below to compute the expectation step. We work with natural logs because they are
numerically easier to deal with from the computer's point of view. Remember also that since you are working with logs, so you need to take the
exponent of the final value and normalize before storing it as a posterior.

(b)
Maximization Step: Having completed the expectation step in the E-M algorithm you studied in class, you now have a complete $N\times
K$$N\times K$ dimensional table of posterior values. We now move on to the maximization step where we are required to update the priors

(Sp(\mathbf{u}_{k},\Sigma_{k}) $Sp(\mathbf{u}_{k},\Sigma_{k})$), the means ($\mathbf{u}_{k}$$\mathbf{u}_{k}$), and the covariances
($\Sigma_{k}$$\Sigma_{k}$) for each of the SKSSKS clusters.

(i) Using page 19 of Lecture 13 (28-Feb-2022) as a reference, write down the expression for the mean of the $k$$k$-th mixture in terms of
$\gamma_{ik}$$\gamma_{ik}$ we computed in (a).

(ii) Again using page 19 as the reference, write down the expression for the covariance of the $k$$k$-th mixture in terms of
$S\gamma_{ik}$$\gamma_{ik}$ and \mathbf{u}_{k}S\mathbf{u}_{k}$ we computed above.

(iii) Once again using page 19 as a reference, write down the expression for the new prior of the $j$$j$-th mixture in terms of
$\gamma_{ik}$$\gamma_{ik}$.

(iv) Code steps (i - iii) into the fit_predict() function in the class template below. This completes the maximization step of the iteration.

Further, complete the code to calculate the final assignments using the latest posterior table. Do not forget to update the self.parameter and
self.priors variables before the function returns the labels.

Execute the cell multiple times until you are able to get an idea of what the consistent results look like.
Plot the clustering results when using features $0$$0$ and $2$$2S.
Practical Tips:

1. The priors in equation 1 can underflow to zero in the log expression, resulting in nans. You may want to add a small value e.g., $1e-4$$1e-
43 to compensate for that.

2. In case the covariance matrix turns out to be singular or badly conditioned, taking the inverse will result in an error. You may want to use
numpy.linalg.pinv rather than numpy.linalg.inv. This will calcualte the pseudo inverse.

3. You can improve the conditioning of the covariance matrices in the maximization step by adding an identity matrix scaled by a small

numheren 1e-4

~ Problem 4 (a) Solution

Complete code cell below.

~ Problem 4 (b)(i) Solution

Problem 4 (b)(i) Solution

N
— 2051 Yk

- -
k Eil Tik

Problem 4 (b)(ii) Solution

Problem 4 (b)(iii) Solution

zk N Zil Yik

Problem 4 (b)(iv) Solution

for problem 4
from sklearn.metrics import davies_bouldin_score, mutual_info_score, adjusted_rand_score

class MyGMMs:
def __init_ (self, X_train, k, num_iter=20):

Parameters

X_train: ndarray of shape (number of samples, num of features).
Training data array.

(%8 il
number of clusters.

num_iter: int
number of iteration to run E-M algorithm for.

self.X_train = X_train

expectation step to compute NxK dimensional array storing posterior values

for mixture_id in range(k):
part (a)
#H#TODO
log_prior = np.log(self.priors[mixture_id])
u = np.asarray(self.parameters[mixture_id][@])
sigma = np.asarray(self.parameters[mixture_id][1])
pi = np.pi
second_term = np.log(np.sqrt(4*pi*pi)*np.linalg.det(sigma))
second_term = 8.5*np.log(4*pi*pi) + @.5*np.log(np.linalg.det(sigma))
X_train = self.X_train

for n in range(np.shape(X_train)[e]):
arr = np.reshape(X_train[n,:],[-1,1])- u
third_term = np.transpose(arr)@np.linalg.pinv(sigma)@arr
log_L = log_prior - second_term - @.5*third_term
Likelihood = np.exp(log_L)
self.posteriors[n,mixture_id] = Likelihood

self.posteriors = self.posteriors/np.sum(self.posteriors,axis=1)[:,None]

posteriors = self.posteriors

label = np.argmax(self.posteriors, axis=1)

label = label.astype(int)

count = np.bincount(label})

new_parameters = new_parameters = [[] for i in range(k)]

new_priors = np.sum(self.posteriors, axis = @)/np.shape(self.posteriors)[@]
new_sigmas = []

for mixture_id in range(k):
part (b)
##TODO
Denominator = np.sum(posteriors[:,mixture_id])
u_nom = np.transpose(np.reshape(np.matmul(posteriors[:,mixture_id],X_train),[1,-1]))
new_parameters[mixture_id].append(u_nom/Denominator)

sigma_nom = @

for n in range(np.shape(X_train)[e]):

self.k = k
self.num_iter = num_iter

def __init_params(self):
"""Function initializes the means, covariances, and posteriors structure for
the E-M algorithm

extract k and data matrices
k = self.k
X_train = self.X_train

Initialize priors as uniform
self.priors = 1/k * np.ones((k,1))

intialize means and covariances

self.parameters = [[] for i in range(k)]

for i in range(k):
self.parameters[i].append(np.random.randn(X_train.shape[1],1)) # initialize random means
temp = np.random.randn(X_train.shape[1],X_train.shape[1])
self.parameters[i].append(temp.T.dot(temp)+le-4*np.eye(X_train.shape[1])) # initialize random covariances

set up posterior structure
self.posteriors = np.zeros((X_train.shape[®], k))

def fit_predict(self):
""" Returns predicted cluster classes.

Returns
y_pred: ndarray of shape (number of samples, 1)}.
Predicted classes for each data point in X_train.

self.__init_params()
print(self.parameters[@][1])
k = self.k

begin the E-M Algorithm
for iteration in range(self.num_iter)

arr = np.reshape(X_train[n,:],[-1,1])- u_nom/Denominator
square_arr = arr@np.transpose(arr)
sigma_nom = sigma_nom + posteriors[n,mixture_id]*square_arr

new_parameters[mixture_id].append(sigma_nom/Denominator+(le-4)*np.eye(np.shape(sigma_nom/Denominator)[@]))

self.priors = new_priors
self.parameters = new_parameters

compute final class predictions

label = np.argmax(self.posteriors, axis=1)
label = label.astype(int)

y_pred = label ##TODO

store distribution paramteres

new_parameters = new_parameters = [[] for i in range(k)]

new_priors = np.sum(self.posteriors, axis = @)/np.shape(self.posteriors)[@]
new_sigmas = []

for mixture_id in range(k):
part (b)
##T0DO
Denominator = np.sum(posteriors[:,mixture_id])

np.transpose(np.reshape(np.matmul(posteriors[:,mixture_id],X_train),[1,-1]))
new_parameters[mixture_id].append(u_nom/Denominator)
sigma_nom = @
for n in range(np.shape(X_train)[@]):

arr = np.reshape(X_train[n,:],[-1,1])- u_nom/Denominator

square_arr = arr@np.transpose(arr)

sigma_nom = sigma_nom + posteriors[n,mixture_id]*square_arr
new_parameters[mixture_id].append(sigma_nom/Denominator)

self.priors = new_priors ##TODO
self.parameters = new_parameters ##TODO

return y_pred

k means parameters

k=3 # num of mixtures
num_iter = 2@

feature_nums = [@8,2] # features to use

load and preprocess the dataset
dataset = load_iris()

X, y = dataset.data, dataset.target

X = (X - X.mean(axis=8)) / X.std(axis=8@)
X = X[:, feature_nums]

print(np.shape(X))

gmm = MyGMMs(X, k, num_iter=num_iter)
y_pred = gmm.fit_predict()

plot data
fig, ax = plt.subplots()

for cluster_id in range(k):
data_x = X[y_pred==cluster_id,@]
data_y = X[y_pred==cluster_id,1]
ax.scatter(data_x, data_y, color = next(color_generator), label='Class {}'.format(cluster_id))
ax.legend()

plt.xlabel('Feature {}'.format(feature_nums[@]))
plt.ylabel('Feature {}'.format(feature_nums[1]))
plt.show()

print(’'Davies Bouldin Score: {:8.4f}'.format(davies_bouldin_score(X, y_pred)))
print('Dunn Index: {:8.4f}".format(dunn_index(X, y_pred)))

print('Mutual Information Score: {:08.4f}'.format(mutual_info_score(y, y_pred)))
print('Rand Index: {:8.4f}'.format(adjusted_rand_score(y, y_pred)))
print('Purity Score: {:0.4f}'.format(purity_score(y, y_pred)))

e Class0
151 @ Classl
Class2

Feature 2

.
o'll|‘l°i s
880 0 ¥,

-2 -1 L] 1 2
Feature 0

Davies Bouldin Score: ©.6441
Dunn Index: 8.0409

Mutual Information Score: @.6514
Rand Index: ©.5389

Purity Score: 0.7208

Problem 5: Implementing Image Segmentation via Unsupervised Clustering on Kaggle
Competition (20pts)

After designing your very own classes implementing the popular K-means and GMM algorithms for clustering, we are now going to test them
out on image data for segmentation of different structures therein. The first part of this question is designed to guide you in a step-by-step
process to convert a simple, gray-scale image in a form that can be processed by the clustering classes you designed above before converting
the result back in a spatiotemporal form for visualization of the segmented structures.

(a)

Run the code cell below to load an image from sklearn's digits dataset representing images of numbers $0 - 9880 - 95. Complete the
function template in the cell to reshape the features in the form of an $8\times 8$$8\times 8$ image that can be displayed using matplotlib's
imshow function. (Hint: You may find it helpful to use np.reshape function.)

(b)

Execute the cell below that takes a digit example as input to each of the clustering classes (K-means and GMM) you designed above to output a
segmentation result. Remember that in this case, each pixel in the image is going to be a 'training example' from the perspective of the
clustering algorithm, with the 'feature’ being the gray scale value itself. Fill in the function template reshaping the digit example into the form
needed for your custering classes.

()

For a simple problem like above with only gray-scale images, you learnt to process images in a form they could be used to train clustering

algorithms (with each individual pixel being a 'training example'). For an RGB image, each training example would have at least 3 features (the
Red, Green, and Blue values for the pixel). In addition, one could add the spatial positions of the pixel as another set of features. We are now
going test what you have learnt by means of a Kaggle competition wherein you are asked to segment two RGB images. Your results will be
submitted to a Kaggle leaderboard to be graded accordingly. Try different feature combinations, image processing techniques to get the best
looking results

We provide you with two images: a simple image consisting of geometric shapes and another one containing more complicated objects, both in

RGB. The images can be downloaded by running the following snippet of code:

lgdown --id 1ZAvUJktJ@aojeXWJInuxuYgqH1Ls1CZ9T-
Igdown --id 1Qh2HppgVSAniVqWxRsbl7cZFhUpRdUpI

You can then load the two images as shown below:

import imageio

iml = imageio.imread('imgl.png")

im2 = imageio.imread('img2.png')

Since this is an open-ended question, you should try to design your own features to achieve better classification results. By submitting your
result to Kaggle, you will see your multi-class classification accuracy and ranking on the leaderborad. 10 pts will depend on your ranking (top
10% get 10pts, top 11%-20% get 9pts, etc.), and another 5 pts depend on your method explanation and clear, well-labeled plots and images.

[Note:]

After having your ideal result, please save your result in result_imgl and result_img2 in the cell below.

We have defined the label for each class in each image. Make sure you use the same settings as us and feel free to use the provided
swapping label code to swap labels if needed.

o for imgl.png, use k=3, background labels as 0, rectangle labels as 1 and triangle labels as 2
o for img2.png, use k=2, background labels as 0, dog labels as 1

After your result_imgl and result_img2 are ready, run the cell below to create a submission.csv. Please download it from this
notebook and submit it in our Kaggle competition.

Please remember to note your Kaggle competition nickname in this notebook. We will use your ranking to grade.

¢ You have 10 submission quota each day to submit your result and get your multi-class classification accuracy and ranking.
¢ We calculate the multi-class classification accuracy with ground-turth hand-crafted labels in both images by

$S\text{Accuracy} = \frac{\text{# of correctly labeled pixels}}{\text{total # of pixels}}$$$S\text{Accuracy} = \frac{\text{# of correctly labeled
pixels}{\text{total # of pixels}}$$

Problem 5 (a) Solution

for problem 5 (a)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

function to reshape
def image_reshape(x):
"""Function reshapes a training example from the Digits dataset into an image

Parameters

x: ndarray of shape (1, num_of_features)
flattened image example from the digits dataset

Returns
img: ndarray of shape (8,8)
ndarray containing reshaped image for visualization

return np.reshape(x, (8,8)) ##TODO

load data and extract a digit example
X, _ = load_digits(return_X_y=True)
digit = X[8].reshape(1, -1)

reshape image

reshaped_img = image_reshape(digit)

visualize
plt.imshow(reshaped_img, cmap='gray')
plt.show()

~ Problem 5 (b) Solution

for problem 5 (b)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits

def feature_reshape(digit):
"""function reshapes a digit training example into a form acceptable for use with
clustering classes

Parameters:

digit: ndarray of shape (1, num_of_features)

Returns:

reshaped_digit: ndarray of shape (num_of_features, 1)

return digit.reshape([-1,1]) ##TODO

load data and extract a digit example
X, _ = load_digits(return_X_y=True)
digit = X[8].reshape(1, -1)

number of mixtures/clusters
k=2

reshaped_digit = feature_reshape(digit)
print(np.shape(reshaped_digit))

cluster with model of choice

model_1 = MyGMMs(reshaped_digit, k=k, num_iter=2@)
model_2 = MyKMeans(reshaped_digit, k=k, num_iter=28)
y_pred_1 = model_1.fit_predict()

y_pred_2 = model_2.fit_predict()

visualize results
segmented_iml_1 = y_pred_1.reshape(8, 8)
segmented_iml_2 = y_pred_2.reshape(8, 8)

fig, (axl, ax2, ax3) = plt.subplots(1,3, figsize=(15,9))
ax1.imshow(image_reshape(digit))
ax1l.set_title('Original')
axl.set_xticks([])
ax1l.set_yticks([])
ax2.imshow(segmented_iml_1)
ax2,set_title(" Segmented By GMMs')
ax2.set_xticks([])
ax2.set_yticks([])
ax3.imshow(segmented_iml_2)
ax3.set_title('Segmented by Kmeans')
ax3.set_xticks([])

ax3.set_yticks([])
plt.show()
Origina

Segmented By GMMs Segmented by Kmeans

v Problem 5 (c) Solution

lgdown --id 1ZAvUJktJ@aojeXWInuxuYgHlLs1CZ9T-
lgdown --id 1Qh2HppgVSAniVqWxRsbl7cZFhUpRdUpI

Downloading...

From: https://drive.google.com/uc?id=1ZAvUJktJ@aojeXWInuxuYqH1Ls1CZ9T-
To: /content/imgl.png

100% 8.57k/8.57k [00:00<00:00, 7.26MB/s]

Downloading...

From: https://drive.google.com/uc?id=1Qh2HppgVSAniVgWxRsbI7cZFhUpRdUpT
To: /content/img2.png

100% 34.1k/34.1k [00:00<00:00, 39.0MB/s]

import imageio

iml = imageio.imread('imgl.png') # use k=3, background labels as @, rectangle labels as 1 and triangle labels as 2
im2 = imageio.imread('img2.png') # use k=2, background labels as @, dog labels as 1

for Problem 2 (e)

from sklearn.cluster import KMeans
from sklearn.mixture import GaussianMixture

X1 = np.concatenate((np.reshape(imi[:,:,0], [-1,1]),
np.reshape(imi[:,:,1], [-1,1]),
np.reshape(imi[:,:,2], [-1,1])), axis=1)

X2 = np.concatenate((np.reshape(im2[:,:,@], [-1,1]),
np.reshape(im2[:,:,1], [-1,1]),
np.reshape(im2[:,:,2], [-1,1])), axis=1)

print(np.shape(X1))

print(np.shape(X2))

model_GMM_iml = GaussianMixture(3,random_state=8) ##TODO
model_GMM_im2 = GaussianMixture(2,random_state=8) ##TODO

y_pred_GMM_iml = model_GMM_iml.fit_predict(X1)
y_pred_im2 = model GMM_im2.fit_predict(X2)

model_KM_im2 = KMeans(n_clusters=2, random_state=8) ##TODO
y_pred_im2 = y_pred_im2 + model_KM_im2.fit_predict(X2)
for i in range(2):

model_GMM_im2 = GaussianMixture(2,random_state=8) ##T0ODO
y_pred_im2 = y_pred_im2 + model GMM_im2.fit_predict(X2)

y_pred_im2 = y_pred_im2/4

y_pred_im2[y_pred_im2>=0.5]=1

y_pred_im2[y_pred_im2<@.5]=0

print(np.shape(np.reshape(y_pred_kmeans_im1,[-1,1])))

import matplotlib.pyplot as plt

new_iml = np.reshape(np.reshape(y_pred_GMM_im1,[-1,1]), [5@,5@])
new_im2 = np.reshape(np.reshape(y_pred_im2,[-1,1]), [1@8,180])

figure()

new_im2[@:15,:] = @

new_im2[83:100,:] = @
new_im2[:,0:5] = &
new_im2[:,95:108] = @
new_im2[30:4@,70:80] = 1

result_im2 = np.zeros((108,1@8))
for i in np.arange(5,95):
for j in np.arange(5,95):
result_im2[i,j] = (new_im2[i+1,j]+ new_im2[i-1,j]+
new_im2[i,j+1]+ new_im2[i,j-1]+
new_im2[i,j]+ new_im2[i+1,j+1]+
new_im2[i-1,j-1]+new_im2[i+1,3-1]+
new_im2[i-1,3+1])/9
if (new_im2[i,3j] >= @.45):
result_im2[i,j] = 1
else:
result_im2[i,j] = @

plt.imshow(new_iml, 'gray')
plt.figure()

plt.subplot(121)
plt.title('Original Image 1')
plt.imshow(iml)
plt.subplot(122)
plt.title('Result Image 1')
plt.imshow(new_iml, ‘gray’)
plt.figure()

plt.subplot(121)
plt.title('Original Image 2')
plt.imshow(im2)
plt.subplot(122)
plt.title('Result Image 2')
plt.imshow(result_im2, 'gray')

> <matplotlib.image.AxesImage at @x7faab6e0@b90>
Original Image 1

A

0 10 20 30 4)

Result Image 1

Original Image 2 Result Image 2

make sure imgl has shape (50, 50) and img2 has shape (180, 180)
result_imgl = new_iml ##TODO
result_img2 = result_im2 ##TODO

e swap labels if needed----------------~---~------o---- ##
Here is the template code for you, if you need to swap label @ and 1

result_imgl[result_imgl==1] = -1
result_imgl[result_imgl==2] = 1
result_imgl[result_imgl==-1] = 2

##t After running this cell, you should be able to download sumission.csv file on the lefe side bar.

cat_data = np.concatenate((result_imgl.reshape(-1, 1), result_img2.reshape(-1, 1)), axis=@)
np.savetxt('/content/submission.csv', np.concatenate((np.arange(12500).reshape(-1, 1), cat_data), axis=1), delimiter=",', header="1d,C

* My Kaggle Nickname is: tyu304

