Georgia Institute of Technology
ECE 4803: Fundamentamentals of Machine Learning (FunML)
Spring 2022
Homework Assignment # 5

Due: Friday, April 1, 2022 @8PM
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Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython notebook. It is designed to be used with Google colab, but you may
use other tools (e.g., Jupyter Lab) as well.

Make sure that you execute all cells in a way so their output is printed beneath the corresponding cell. Thus, after successfully executing
all cells properly, the resulting notebook has all the questions and your answers.

Print a PDF copy of the notebook with all its outputs printed and submit the PDF on canvas under Assignments.

Make sure you delete any scratch cells before you export this document as a PDF. Do not change the order of the questions and do not
remove any part of the questions. Edit at the indicated places only.

Rename the PDF according to the format: LastName_FirstName_ECE_4803_sp22_assignment_#.pdf

It is encouraged for you to discuss homework problems amongst each other, but any copying is strictly prohibited and will be subject to
Georgia Tech Honor Code.

Late homework is not accepted unless arranged otherwise and in advance.

Comment on your codes.
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» Refer to the tutorial and the supplementary/reading materials that are posted on canvas for lectures 14, 15,16, 17 to help you with this
assignment.

« IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and the part of the problem you are working on.
For example, start your solution for Part (c) of Problem 2 by having the first line as:
Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.

+ Code + Text
Assignment Objectives:
s Introduction to the use of pyTorch basic functions and libraries
e Learn deep model trainining and evaluation
e Learnto use pre-trained deep models for classifying your own images
e Advance in your pyTorch knowledge and experience
+ Code + Text

Recommended Readings

This assignment uses the popular Python-based deep learning framework, pytorch. You are highly encouraged to refer to the following
resources as references. The key functions you will be using relate to neural network and defining a dataloader pipeline.

« Introduction to Pytorch tensors and autograd
¢ Defining a neural network architecture
s Setting up a dataloader

The following web pages offer a summarized overview that is worth reading before starting the work in this assignment.

s QOverview of pytorch
e« How to use a dataloader in pPytorch?

Guide for Fxnortina Invthon Notehook to PDF:
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Here is a video summarizes how to export Ipythin Notebook into PDF.

e [Method1: Print to PDF]
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose [Save as PDF] to export this Ipython Notebook
to PDF for submission.

Note: Sometimes figures or texts are splited into different pages. Try to tweak the layout by adding empty lines to avoid this effect as much
as you can.

« [Method2: colab-pdf script]
The author of that video provided an alternative method that can generate better layout PDF. However, it only works for Ipythin Notebook
without embedded images.
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run the fisrt cell, it will ask for google drive

permission. Executing the second cell will generate the PDF file in your google drive home directory. Make sure you use the correct path
and file name.

## this will link colab with your google drive
from google.colab import drive

drive.mount('/content/drive')

%¥capture
lwget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py
from colab_pdf import colab_pdf

colab_pdf('LastName_FirstName_ ECE_4803 sp22 assignment_#.ipynb') ## change path and file name

« [Method3: GoFullPage Chrome Extension] (most recommended)
Install the extension and aenerate PDF file of the Invthon Notehook in the browser.



Note: Georgia Tech provides a student discount for Adobe Acrobat subscription. Further information can be found here.
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Problem 1: Introduction to PyTorch

PyTorch is a Python-based scientific computing library for deep learning. pyTorch executes deep learning computations over Tensor 0bject,
which is a specialized data structure that behaves similarly as numpy array but can run on GPUs. It also provides a powerful automatic
differentiation engine that computes the gradients during the back-propagation. To enable the GPU go to:

Edit »> Notebook settings »> Hardware accelerator >> GPU »» save

This problem introduces tensor initialization, basic operations and automatic differentiation that you can carry out with pPyTorch and the
standard library torch. You may find the Link useful.

Suppose that you are given the following:

A:[l _1],\' :[1],anva:[_2},V: Vi Vo
0 1 2 -1

You are provided with the template code below. Do not change the parts indicated. Your task below is to:

(a) Create the vectors vi, vo, matrices A and V above as tensor objects. vy and va should have shape torch.size([2, 1]),and Aand V'
should have shape torch.size([2, 2]).Note: Data shape is importantin numpy and torch. Although (2, 1) and (2,) both have 2 elements in the
data, some operations are only valid in one of the forms.

(b) Write code to create the Hadamard product of Aand V'

(c) Write code to create the Matrix product AV

(d) Write your own code to compute the square of L2 norm ||vy — VZ”% In this part, do not use the torch.norm function.

(e) Giveny = ||v1 — v2 ||%, you will implement automatic differentiation to compute gradients of y with respect to v; and va. First, re-create
two tensors v1 and vo with reauires arad=True. This sianals to autoarad that everv operation on the tensors should be tracked. Thus. the



TWO TeNsors v and vo WITN requires_grad= rue. 1nis signals 10 autograd tnat every operation on tne 1ensors snould De Tracked. 1nus, ine
gradients with respect to the tensors can be automatically computed using chain rule. Then, write the code to perform automatic differentiation

of y using function torch.autograd.backward. In the printing functions below, vi.grad and v2.grad automatically compute Bvﬂ and %,
1 2
respectively. Compare them with the printed manual gradients calculation ;:ry = 2(vy — v3)and % = —2(v; — vy), do they match?
1 2
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Problem 1 (a)-(e) Solution

[2] ## Problem 1

# Import Pytorch Libraries
import torch

## part (a) Create matrices

[11, [211)

[-21, [-11D)

1, -1, [@, 1]11)##T0D0 # define A
1, -2, [2, -1]11)##T0D0 # define V

vl = torch.tensor(
v2 = torch.tensor(
A = torch.tensor([
V = torch.tensor([

## part (b) Compute the hadamard product
hadamard_AV = torch.mul(A, V)##TODO # hadamard product of A and V

## part (c) Compute the matrix product
Matrix_AV = torch.matmul(A, V)##T0D0 # matrix product of A and V

## part (d) Compute the L2 norm
square_12 v = torch.sum(torch.square(vl-v2))##T0DO # the L2 norm of vl - v2

# ## part (e)
# # Create tensors and keep track of operations on them
vl = torch.tensor([[1.8], [2.0]], requires_grad=True)##TODO



VLI S LUPLIL LENSUr [ [L.9], [£.9]], FEyuLres_Brau=I1rue J## oo

v2 = torch.tensor([[-2.8], [-1.8]], requires_grad=True)##T0DO

y = (torch.norm( (vl - v2).float(),2))**2
# Perform automatic differentiation of y
##TODO

torch.autograd.backward(y)

print('vl: \n', v1)

print('v2: \n', v2)

print("A: \n', A)

print('V: \n', V)

print('\nHadamard Product of A and V: \n', hadamard_AV)

print("\nMatrix Product of A and V: \n', Matrix_ AV)

print("L2 norm with \'torch.norm\': %4f" %(torch.norm((vl - v2).float(),2))**2,"' | L2 norm with your function: %4f' %square_12 v)
print("The gradient w.r.t. vl calculated by automatic differentiation: \n" , vl.grad)
r.t. vl calculated manually: \n", 2¥(vl-v2))

print("The gradient w.r.t. v2 calculated by automatic differentiation: \n" , vZ2.grad)
print("The gradient w.r.t. v2 calculated manually: \n", -2¥(vl-v2))

print("The gradient w.

vl:
tensor([[1.],
[2.]1], requires_grad=True)
v2:
tensor([[-2.1,
[-1.]], reguires_grad=True)
Az
tensor([[ 1, -11,
[ e, 111)
Ve
tensor([[ 1, -2],
[ 2, -111)

Hadamard Product of A and V:
tensor([[ 1, 21,

oA e
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vl:
tensor([[1.],
[2.]], requires_grad=True)
v2:
tensor([[-2.],
[-1.]], requires_grad=True)
A
tensor([[ 1, -11,
[ e, 111)
Ve
tensor([[ 1, -2],
[ 2, -111)

Hadamard Product of A and V:
tensor([[ 1, 21,
[ e, -111)

Matrix Product of A and V:
tensor([[-1, -1],
[ 2, -111)
L2 norm with 'torch.norm’: 17.999998

| L2 norm with your function: 18.00@000

The gradient w.r.t. vl calculated by automatic differentiation:

tensor([[6.],
(6.1

The gradient w.r.t. vl calculated manually:

tensor([[6.],

[6.]], grad_fn=<MulBackwarde:>)

The gradient w.r.t. v2 calculated by automatic differentiation:

tensor([[-6.],
[-6.11)

The gradient w.r.t. v2 calculated manually:

tensor([[-6.],

[-6.]], grad_fn=<MulBackwarde>)



Problem 1 (e) Solution

Yes they match

- Problem 2 : Computational Graph and Backpropagation

In Problem 1 (e), we have seen the autograd feature in Pytorch in a very simple function. Here, we will learn how to plot a computational graph

and calculate backpropagation on a more complex function.
+ Code + Text

Problem 2 (a) Plot Computational Graph
Computationl Graph is a directional graph that defines all the arithmetic calculations in variables within the model. In pytorch, the autograd

feature uses dynamic computational graph mechanism to keep track of the gradient of every variable with requires_grad=True in the

computational graph. Here is an overview about pyotrch autograd feature. For example, we can plot the computational graph of
g(z1) = wizy +b

by:
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In this question, plot the computaional graph of

Flz1, 23, w1,wy) = e (1mtwam)
You can plot it by hand or use networkx and matplotlib libraries. Use circles for variables and rectangles for arithmetic operations.
Intermediate states should be labled as z,.

° ## Example Code of Computational Graph for g(x1)=wlx1l+bl
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
figure(figsize=(12, 5), dpi=88)
class Vert:

# default constructor

def _init_ (self, name, edges):
self.name = name
self.edges = edges

nodes = []

nodes.append(Vert('wl', ['mull']))
nodes.append(Vert('x1', ['mull']))
nodes.append(Vert('mull', ['z1']))
nodes.append(Vert('z1', ['addl']))
nodes.append(Vert('b1l', ['addl']))
nodes.append(Vert('addl', ['g']))
nodes.append(Vert('g', [1))

G = nx.DiGraph()

for v in nodes:
G.add_node(v.name)
for e in v.edges:
G.add_edge(v.name, e)



positions = {'wl':(-108, 18),
'x1':(-100, -10),
'mull’:(-50, @),
'z1': (e, @),
‘b1': (0, -10),
‘addl': (58, @),
"g': (100, @)}

labels = {'wl':'wl',

"x1':'x1",
"mull:tF,
'zl':'z1',
'bl':'b1",
‘addl':'+",
gtitg'}

nx.draw_networkx_nodes(G, pos=positions, node_shape='o', nodelist=['wl', 'x1', 'zl', 'bl', 'g'], node_size=8080, node_color='w', edgecolors="y')
nx.draw_networkx_nodes(G, pos=positions, node_shape='s', nodelist=['mull', 'addl'], node_size=868, node_color='w', edgecolors='b")
nx.draw_networkx_labels(G, pos=positions, labels=labels)

nx.draw_networkx_edges(G, pos=positions, arrowsize=10, node_size=868)

plt.x1lim(-128, 128)
plt.ylim(-36, 30)

plt.show()



plt.show()

wl

x1 bl

" Problem 2 (a) Solution

[ 1 ## Problem 2 (a)

# Plot computational graph by hand or using networkx and matplotlib libraries (or any library)
##TODO

import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure



figure(figsize=(12, 5), dpi=8@)
class Vert:

# default constructor

def _init_ (self, name, edges):
self.name = name
self.edges = edges

nodes = []

nodes.append(Vert('wl', ['mull']))
nodes.append(Vert('x1', ['mull']))
nodes.append(Vert ('mull', ['z1']))
nodes.append(Vert('z1', ['addl1']))

nodes.append(Vert('w2', ['mul2']))
nodes.append(Vert('x2"', ['mul2']))
nodes.append(Vert('mul2', ['2z2']))
nodes.append(Vert('z2"', ['addl1']))

nodes.append(Vert('addl', ['z3']1))
nodes.append(Vert('z3"', ["invl']))
nodes.append(Vert('invl', ['z4']))
nodes.append(Vert('z4', ['expl']))
nodes.append(Vert('expl', ['f']))
nodes.append(Vert ('f', [1))

G = nx.DiGraph()

for v in nodes:
G.add_node(v.name)
for e in v.edges:
G.add_edge(v.name, e)

positions = {'wl':(-108, 1@),
"x1':(-100, -10),



'mull’: (-50, @),
'z1': (@, @),
'w2':(-1e0, -30),
'x2':(-100, -58),
'mul2':(-50, -48),
'z2': (@, -40),
'add1': (50, -20),
'z3':(100, -20),
'invl': (150, -2@),
24" : (200, -20),
'expl': (250, -28),
“f': (300, -20)}

labels = {'wl':'wl',

'x1":'x1",
‘mull’:tE
'zl':'z1",
‘w2 w2,
'w2': w2,
‘mul2 R
'z2':'z2",
‘addl':"+",
'z3':'z3°,
"inwl': -t
'zd':'z4",
'expl':"exp()’,
ot}

nx.draw_networkx_nodes(G, pos=positions, node_shape='o', nodelist=['wl', 'x1', 'zl1','w2', 'x2', 'z2', 'z3','z4', 'f'], node_size=80@, node_color="w', edgecolors='y')
nx.draw_networkx_nodes (G, pos=positions, node_shape='s', nodelist=['mull’', 'mul2', 'addl’','invl', 'expl'], node_size=800, node_color='w', edgecolors='b")
nx.draw_networkx_labels(G, pos=positions, labels=labels)

nx.draw_networkx_edges(G, pos=positions, arrowsize=18, node_size=808)

plt.x1lim(-120, 408)
plt.ylim(-100, 30)



plt.show() N eooB G U N

&

wl

x1

+ 3 » ¥ power p( f
v /_l |

Problem 2 (b) Forward pass

Assume we have w; = 0.1, z; = 0.3, wy = —0.2, 23 = 0.4 and we have f* = 1 which is the desired value of f. And we define error
e = f — f*. Calculate the value of f and e, and add f* and e in the computationl graph.

(all numbers round to at least 3 decimals.)

" Problem 2 (b) Solution

e =e (01:03-02:0.4) _ £+ _ 1 05127109638 — 1 = 0.05127109638



## Problem 2 (b)

# Plot computational graph by hand or using networkx and matplotlib libraries (or any library)

##TODO

import networkx as nx

import matplotlib.pyplot as plt

from matplotlib.pyplot import figure
figure(figsize=(12, 5), dpi=88)
class Vert:

# default constructor

def _init_ (self, name, edges):
self_name = name
self.edges = edges

nodes = []

nodes.append(Vert('wl', ['mull’']))
nodes.append(Vert('x1', ['mull’']))
nodes.append(Vert('mull’, ['z1']1))
nodes.append(Vert('z1', ['add1']))

nodes.append(Vert('w2', ['mul2']))
nodes.append(Vert('x2', ['mul2']))
nodes.append(Vert('mul2', ['z2']1))
nodes.append(Vert('z2', ['addl']))

nodes.append(Vert('addl', ['z3'1))
nodes.append(Vert('z3', ['invl']))
nodes.append(Vert('-1', ['invl']))
nodes.append(Vert('invl', ['power']))
nodes.append(Vert('power', ['expl']))
nodes.append(Vert('base', ['expl']))
nodes.append(Vert('expl', ['f']))
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nodes
nodes

nodes.
nodes.

-append(Vert(*f', ['-'1))
.append(Vert('f*', ['-'1))

append(Vert('-", ['e']))
append(Vert('e', [1))

G = nx.DiGraph()

for v

Q.

in nodes:
add_node(v.name)

for e in v.edges:

G.add_edge(v.name, e)

positions = {'wl':(-108, 18),

'x1':(-100, -10),
'mull': (e, @),
'z1': (1ee, @),
'w2':(-108, -30),
'x2':(-100, -50),
'mul2': (@, -48),
'22': (100, -40),
‘add1l': (200, -20),
'23':(300, -20),
"_1':(300, -40),
'invl': (468, -20),
'power': (500, -28),
'base': (508, -40),
'expl': (6088, -20),
‘f':(700, -20),
L% (700, -40),
'_':(8e@, -20),
'e': (9068, -20)}

labels = {"wl':'wl",

"wl':'xl',
"mullt:tF,

O E=N = [ » BN |




(]

'zl':'z1',

w2 w2,
'w2':'x2',
"mul2:tE
'z2':'z2",
‘addl':'+",
'z3':'z3°,
D_q1050=419,

"inwlt:tE,

'power' : 'power’,

'base':'base’,
'expl':'exp()’

3
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‘e':'e'}
nx.draw_networkx_nodes(G, pos=positions, node_shape='o', nodelist=['wl', 'x1', 'zl1','w2', 'x2"', 'z2', 'z3','-1', 'power','base', 'f','f*','e'], node_size=1500, node_
nx.draw_networkx_nodes(G, pos=positions, node_shape='s', nodelist=['mull','mul2', 'addl','invl', ‘'expl','-'], node_size=808, node_color='w', edgecolors='b"')

nx.draw_networkx_labels(G, pos=positions, labels=labels)

nx.draw_networkx_edges(G, pos=positions, arrowsize=1@, node_size=868)

plt.xlim(-200, 1008)
plt.ylim(-108, 38)

plt.show()
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z1l



plt.show()
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Problem 2 (c) Backpropagation

In Lecture 15, we learned the idea of backpropagation. Follow the concepts in Lecture 15 page 16, we can calculate every of the gradient of the
variable in the computational graph in Problem 2 (b) with chain rule. According to your computational graph, calculate the value of

OF
(i) o
(iii) 3%




Problem 2 (c) Solution

o Oe _
0 57 =
(i) 2= = 2 2 - 03154
1
i) 22 = Je i = =-0.4205
Jwg Of

Problem 2 (d) Verify with Pytorch

Now, verify ;:j and i‘; you calculate in part (c) using pytorch in the cell below.

« [68] ## Problem 2 (d)

import torch

wl = torch.tensor([©.1], requires_grad=True)
x1 = torch.tensor([©.3])

w2 = torch.tensor([-6.2], requires_grad=True)
x2 = torch.tensor([©.4])

f_star = torch.tensor([1.0])

e Don't change anything above-------------------—-———- #
#H#TODO
f = torch.exp(-(wl*x1+w2%x2))

= f - f_star

e.backward()
dedwl = wl.grad
dedw2 = w2.grad

print('de/dwl:")



print(dedwl)
print('de/dw2:")
print(dedw2)

C» de/dwl:
tensor([-0.3154])
de/dw2:
tensor([-0.4205])

~ Problem 3 : Jumpstart to CNN training with pigits

You may remember from assignment 4 that you were asked to perform image segmentation on the pigits datasetin sklearn.The Digits
dataset contains images of handwritten digits 0, 1,. .., 9, each of size 8 x 8 pixels. We are now going to perform image classification with
CNNs. In the process, you are going to learn how to set up a standard training and testing pipeline in Pytorch.

Problem 3 (a) Load Data from sklearn
Execute the code cell below to load the digits dataset into the workspace and divide it into training and testing sets. Use the load_digits() and
train_test_split functions provided in sklearn forthis purpose.

v Problem 3 (a) Solution

v [69] ## Problem 3 (a)

# imports

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split
import numpy as np

import matplotlib.pyplot as plt

from torch.utils_data import Dataset, Datal nader



import torch
import torch.nn as nn

# load data
digit = load_digits()
X, vy = digit.data, digit.target##T0DO

# create train test splits

num_train = 588

num_test = X.shape[@] - num_train

X_train, X test, y_train, y_test = train_test_split(X, y, test_size=num_test, train_size=num_train, random_state=4803)

# print(torch.FloatTensor(X[5].reshape((1,8,8))).shape)

Problem 3 (b) Implement Custom Pytorch Dataset

Training neural networks in Pytorch requires one to instantiate objects called Dataloaders, the purpose of which is to extract raw data and
present it in the appropriate form to the neural networks. This requires one to set up a custom Dataset class and afterwards define its
__getitem_ () and __len_ () functions. The dataset class is then input 1o the torch.utils.data.Dataloader oObject to create a data pipeline.
This is where one may define various attributes like the batch size, if one wants the batches to be presented in a shuffled order, and so on. The
Pytorch documentation page here provides an excellent overview of this process. You are provided the template for the Digits dataset class
and its various functions below. Use the function documentations and helps to guide you to complete the dataset class definition.

" Problem 3 (b) Solution

+ Code + Text

v [7@] ## Problem 3 (b)



# set up custom dataset class
class Digits(Dataset):
def __init_ (self, X, y):
"""Function stores the data and label arrays returned by load digits function.

Parameters

X : array_like, shape(Num_samples, Num_of features)
numpy array containing the data matrix containing digits training examples
and features.

y : array_like, shape(num_samples)

numpy array containing labels from 8,1,...,9 for each training sample in X
self.X = X
self.y = y

def _ getitem (self, index):
"""function extracts a single example from X and the label given its index.

Parameters

index : int

index of a single example to be extracted from X

Returns

input : torch.tensor, shape(l, 8, 8), type torch.float
indexed example from X reshaped into a single channel grayscale image of
size 8 x 8 and float datatype.

target : int, dtype torch.longtensor
label for input returned as an integer of torch.longtensor datatype

wun



H#HTODO

# input = torch.FloatTensor(self.X[index].reshape((1,8,8)))
# # print(input.dtype)

# target = torch.lLongTensor(self.y[index])

# print(target.dtype)

input = torch.tensor(self.X[index])

input = input.type(torch.float)

input = torch.reshape(input, (1,8,8))

target = torch.tensor(self.y[index])

target = target.type(torch.LongTensor)

return input, target

def _len_ (self):
return self.X.shape[8]

train batch size = 108@
test_batch_size = 1

train_dataset = Digits(X_train, y_train)
trainloader = Dataloader(train_dataset, batch_size=train_batch_size, shuffle=True)

test_dataset = Digits(X_test, y_test)
testloader = Dataloader(test_dataset, batch_size=test batch_size, shuffle=True)

Problem 3 (c) Define a CNN
The next stage in the process involves defining a neural network class inheriting from the torch.nn.Module parent class. The user is required to

initialize the network and then define its forward() function. The pytorch documentation page here gives an excellent example of this. For our
purposes, we are going to use a simple 3-layer network to classify the images presented. The details of the layers are given below:



« 2D convolution layer, kernel size = 3, input channels = 1, output channels = 16

e RelU

« 2D convolution layer, kernel size = 3, input channels = 16, output channels = 32

« RelU

« Maxpool, reduces input dimensions by half i.e,, from 8 x 8 to4 x 4

« Linear layer, maps the 16 pixels in each 4 x 4 image to a 10-element vector, corresponding to the number of possible output labels.

Complete the class definition for the neural network given below as per the instructions above.

" Problem 3 (c) Solution

v [71] ## Problem 3 (c)

# define network
class MySimpleCNN{torch.nn.Module):
def _init_ (self):
"""Tnititalizes the various layers in the network"""
super(MySimpleCNN, self). init ()
##TODO
self.convl = nn.Conv2d(in_channels = 1, out_channels = 16, kernel_size = 3, stride = 1, padding = 1)
self.conv2 = nn.Conv2d(in_channels = 16, out_channels = 32, kernel_size = 3, stride = 1, padding = 1)
self.linearl = nn.Linear(128, 18)
self.relu = nn.RelLU()
self.maxpool = nn.MaxPool2d(kernel_size = 2, stride = 2)
self.convl = nn.Conv2d(1, 16, 3, 1, 1)
self.conv2 = nn.Conv2d(16, 32, 3, 1, 1)
self.linearl = nn.Linear(128, 18)
self.relu = nn.RelU()

EE A



self.maxpool = nn.MaxPool2d(2,2)

def forward(self, x):
"""Processes the input from the dataloaders to return predicted output
probability wvectors for each example in the batch.

Parameters

x : torch.tensor, shape(batch_size, 1, 8, 8), dtype torch.float
output from dataloade containing batch_size number of 8 x 8 images as
torch tensors

out : torch.tensor, shape (batch_size,10), dtype= torch.float.
batch_size number of 18-element vectors for each image in the input batch.

##TODO

x = self.relu(self.convi(x))

= self.maxpool(x)

= self.relu(self.conv2(x))

= self.maxpool(x)

= torch.flatten(x, 1)

= self.linearl(x)

= self.relu(self.convl(x)))

= self.maxpool(self.relu(self.convl(x)))

= self.maxpool(self.relu(self.conv2(x)))

XX OH H W W W o
A

torch.flatten(x, 1)
x = self.linearl(x)

E
1}

out = torch.nn.functional.log_softmax(x, dim=1)

return out



Problem 3 (d) Train the CNN

We now move to training the CNN. This requires defining objects for the loss function (Cross entropy in this case), the optimizer (any one of
those you learnt in class), passing the network parameters to the optimizer object, and defining the learning rate. In the training loop, one is
required to iterate through the training loader, predict the output vector (unnormalized) probabilities, compute the loss, backpropagate, and
perform the gradient descent step. Complete the code below 1o execute the training step. A successfully training process would show the loss
decreasing from a high starting value.

N B /S

" Problem 3 (d) Solution

« [74] ## Problem 3 (d)

# perform training
1r = 1e-3
epochs = 180

# initliaze the network
net = MySimpleCNN()

loss_function = nn.CrossEntropyloss() ##TODO

# loss_function = nn.NLLLoss()

# optimizer = torch.optim.Adam(net.parameters(), 1lr) ##TODO
optimizer = torch.optim.SGD(net.parameters(), lr = 1r) ##TODO

for epoch in range(epochs):

net.train() # training mode



[

for epoch in range(epochs):

net.train() # training mode

for iteration, (x, y) in enumerate(trainloader):

optimizer.zero grad()

out = net(x)##TODO
loss = loss_function(out, y)##TODO

loss.backward()
optimizer.step()

print('Epoch : {}
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Problem 3 (e) Evaluation Test Result

Finally, we move onto test evaluation using the trained CNN. After training the CNN, the trained parametes will be saved in the CNN object which
is our net variable here. You simply execute the cell below to visualize randomly sampled images in the test set and the network predictions on
those images. Execute the cell multiple times. Are you getting consistently good predictions for all images? Explain some of the reasons why
the network is able 1o learn to classify so well on the Digits dataset with reference to the particular characteristics of the images in the dataset.

Problem 3 (e) Solution

e Yes, | am getting consistently good predictions for all images
o It predicts so well because these are limited range of numbers from 0~ 10 and are farily simple to read.
+ Code + Text

v [73] ## Problem 3 (e)

# perform inference and visualize predictions
net.eval() # testing mode

num_images = 5
fig, axes = plt.subplots(l, num_images, figsize=(15,8))

for i, ax in zip(range(num_images), axes.flatten()):
x, _ = next(iter(testloader))
out = net(x)
ax.imshow(x.detach().cpu().numpy().squeeze())
ax.set_title('Predicted Label: {}'.format(out.argmax().item()))

plt.tight_layout()

2N oB S D8




plt.show()

Predicted Label: 8 Predicted Label: 7 Predicted Label: 3 Predicted Label: 4 Predicted Label: 8

~ Problem 4: Image Classification Using Pre-trained Models

You have learned the pipeline of how to train a CNN on a specific dataset. In practice, we do not need to train an entire model from scratch,
because it is relatively rare to have a dataset of sufficient size. Instead, it is common to use a pre-trained deep model that is trained on a very
large dataset such as ImageNet to address your task of interest. In this exercise, you will learn how to directly use pre-trained deep
architectures to classify your own images. You can choose photos that you already took or find photos from the web.

Problem 4 (a) Upload Images
Create a folder named my_images using the code below ( Imkdir my_images ) to store all your uploaded images. Then, upload your own images
(at least 12 images) to the created my_images folder as the step shown below.

Files
B G B

[« ]
« [ my_images

Upload images
New fide y .



Poww Fosar
Rename fokder

Delete fokder

Copy path

Retresh

" Problem 4 (a) Solution

~ [75] ## Problem 4 (a)

# create a folder named “my_images”
Imkdir my_images

mkdir: cannot create directory ‘my_images’: File exists

Problem 4 (b) Visualize Images
Visualize your uploaded images by simply executing the code below.

" Problem 4 (b) Solution

[ 1 ## Problem 4 (b)

from PIL import Image

import matplotlib.pyplot as plt
from glob import glob

import os



" Problem 4 (b) Solution

BRI = RV S |
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## Problem 4 (b)

from PIL import Image

import matplotlib.pyplot as plt
from glob import glob

import os

import numpy as np

def imread(img dir):
# read the images into a list of "PIL.Image” objects
images = []
for f in glob(os.path.join(img_dir, "*")):
images.append(Image.open(f).convert('RGB'))

return images

def vis_img label(image list, label list=None):
# visualize the images w/ labels
Tot = len(image_list)
Cols = 4
Rows = Tot // Cols
Rows += (Tot % Cols)>@
if label list is None:
label list = [""]*Tot
# Create a Position index
Position = range(1,Tot + 1)
fig = plt.figure(figsize=(Cols*5, Rows*5))
for i in range(Tot):



image = image_list[i]

# add every single subplot to the figure

ax = fig.add_subplot(Rows,Cols,Position[i])
ax.imshow(np.asarray(image))
ax.set_title(label list[i])

## Load your uploaded images
img_dir = "/content/my_images"
image_list = imread(img_dir)

## visualize your uploaded images
vis_img_label(image_list)
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Problem 4 (c) Define Custom Dataset
In this part, you will learn how to prepare your image data for classification by constructing a customized PyTorch dataloader. The customized

dataset is provided below as a template class myDataset . The class myDataset overrides the following methods:

len

that returns the size of mvDataset (the lenath of the img 1ist)
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e _ getitem__ to support the indexing such that myDataset[i] can be used to get the i-th sample of img_list.

Your tasks are:

« Write your code to return the size of myDataset in the method _ len_ .
« Write your code to index the i-th sample of img_list inthe method _ getitem_ .

You may find more details about torch.utils.data.Dataset for constructing a customized PyTorch dataset.

" Problem 4 (c) Solution

~ [4] ## Problem 4 (c)

from torch.utils.data import Dataset, Dataloader
from torchvision import transforms

# customized pytorch dataset
class myDataset(Dataset):
def _init_ (self, img_list, data_transform=None):
self.img_list = img_list # the list of all uploaded Images
self.length = len(img_list)

self.data_transform = data_transform

def _ getitem_ (self, index):
"""function extracts a single example from img_list given its index.

Parameters

index : int

index of a single example to be extracted from img_list



Returns

img : torch.tensor, shape(3, 224, 224), type torch.float
indexed example from img_list reshaped into a RGB channel image of
size 224 x 224 and float datatype.

# convert_tensor = transforms.ToTensor()

img = self.img_list[index]

# img = img.type(torch.float)

# img = torch.reshape(input, (3, 224, 224))

# img = ##TODO

if self.data_transform is not MNone:
img =self.data_transform(img) # apply data transformations
assert img.shape == (3, 224, 224)

return img

def _ len_ (self):

Returns

length : int
length of img_list.

length = len(self.img list) ##TODO

return length

data_transform = transforms.Compose([transforms.Resize( (224, 224)),

trancfarme TaTencan( )
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data_transform = transforms.Compose([transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[©.485, ©.456, ©.4606],

std=[0.229, ©.224, 0.225])1)

my_dataset = myDataset(image list, data_transform)
my_dataloader = Dataloader(my_dataset, batch_size=64, shuffle=False, num_workers=2)

#----verify the customized dataset “myDataset™ ----#
print('The size of the dataset: ', len(my_dataset))
print('The dimension of the first image sample after transformations: ', my_dataset[8].shape)

The size of the dataset: 12
The dimension of the first image sample after transformations: +torch.Size([3, 224, 224])

RN = [ - BN |

+ Code ™™ + Text

Problem 4 (d) Load AlexNet

You have completed the data preparation by constructing a customized dataloader. Now you will start to use a pre-trained model for classifying
your uploaded images. The provided code for this part loads the pre-trained AlexNet using the torchvision.models module. The pre-trained
model is constructed by passing pretrained=True . Execute the code below as is and observe the printed AlexNet architecture. Does it match
the AlexNet architecture illustrated in the slide 23 of lecture 17?

Problem 4 (d) Solution

[5] ## Problem 4 (d)
import torchvision

#Load the pre-trained AlexNet



alexnet = torchvision.models.alexnet(pretrained=True)
print(alexnet) # print the model architecture

[ Downloading: "https://download.pytorch.org/models/alexnet-owt-7he5he79.pth" to /root/.cache/torch/hub/checkpoints/alexnet-owt-7be5be79.pth

100% [ 233172331 [00:04<00:00, 53.7MB/s]

Alexhet (
(features): Sequential(
(8): Conv2d(3, 64, kernel size=(11, 11), stride=(4, 4), padding=(2, 2))

(1): RelU(inplace=True)

(2): MaxPool2d(kernel size=3, stride=2, padding=©, dilation=1, ceil mode=False)
(3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))

(4): RelLU(inplace=True)

(5): MaxPool2d(kernel_size=3, stride=2, padding=@, dilation=1, ceil mode=False)
(6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(7): RelU(inplace=True)

(8): Conv2d(384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

(9): RelU(inplace=True)

(18): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace=True)

(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
(classifier): Sequential(

(8): Dropout(p=0.5, inplace=False)

(1): Linear(in_features=9216, out_features=4896, bias=True)
(2): RelLU(inplace=True)

(3): Dropout(p=08.5, inplace=False)

(4): Linear(in_features=4096, out_features=4896, bias=True)
(5): RelU(inplace=True)

(6): Linear(in_features=4096, out_features=100@, bias=True)

Problem 4 (e) Inference with AlexNet
In this part, you will perform model inference to classify your uploaded images by the pre-trained AlexNet. Write your code to compute the



predicted softmax probabilities in the function predict(model, dataloader).You may consider to use the function
torch.nn.functional.softmax. Run the code cell to visualize the images with predicted labels. Do these predictions make sense?

" Problem 4 (e) Solution

v [6] ## Problem 4 (e)

# importing Pytorch Libraries
import torch

import numpy as np

import matplotlib.pyplot as plt
import torch.nn.functional as F

!gdown --id 1bDrtvgX-ztIh7A46FQNVROSTbEVUYogn
label_map = torch.load("/content/label dict.pth")

def predict(model, dataloader):
pred_total = []

device = torch.device("cuda:®" if torch.cuda.is_available() else "cpu")
model . to(device)

with torch.no_grad():
model.eval() # switch to inference mode

for batch_id, img_tensor in enumerate(dataloader):

img_tensor = img_tensor.to(device)
logits = model(img_tensor) ##TODO



output = torch.nn.functional.log_softmax(logits)##T0ODO APV o BB EE
pred_class_idx = output.argmax(dim=1) - -

pred_total.append(pred_class_idx.data)

pred_total = torch.cat(pred_total).cpu().numpy()
return pred_total

predictions_alexnet = predict(alexnet, my_dataloader) # numpy array of predicted class labels
label list_alexnet = [label_map[pred] for pred in predictions_alexnet] # list of class names
print("------------- visualize the images with predicted class names by AlexNet ------------- ")
vis_img_label(image_list, label list_alexnet)

O Downloading.. .
From: https://drive.google.com/uc?id=1bDrtvgX-ztTh7A46FQNVROS7bEVuYogn
To: /content/label _dict.pth
100% 33.1k/33.1k [00:00<00:00, 49.6MB/s]
J/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:26: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to incl
————————————— visualize the images with predicted class names by AlexNet -------------
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Problem 4 (f) Vgg16 and Resnet18

Now you will use other pre-trained model architectures including veggie and resnet18 for classifying your images. Simply execute the two code



cells below for visualizing the images with predicted labels. Compare the predictions of different architectures. Do the predictions by a more
complex model always make more sense?

Problem 4 (f) Solution

v [7] ## Problem 4 (f) Vggl6
vgglé = torchvision.models.vggl6(pretrained=True)

predictions_vggl6 = predict(vggl6, my_dataloader) # numpy array of predicted class labels
label_list vggl6 = [label_map[pred] for pred in predictions_vggl6] # list of class names
print("------------- visualize the images with predicted class names by VGG16 ------------- ")
vis_img_label(image_list, label list_ vggl6)

Downloading: "https://download.pytorch.org/models/vggl6-397923af.pth" to /root/.cache/torch/hub/checkpoints/vggl6-397923af.pth

fusr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:26: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include
————————————— visualize the images with predicted class names by VGG16 -------------
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“ [8] ## Problem 4 (f) Resnetl8



resnetl8 = torchvision.models.resnetl18(pretrained=True)

predictions_resnetl18 = predict(resnet18, my_dataloader) # numpy array of predicted class labels
label_list_resnetl8 = [label_map[pred] for pred in predictions_resnetl8] # list of class names
print("------------- visualize the images with predicted class names by ResNetl8 ------------- *)
vis_img_label(image_list, label list_resnetl8)

Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /root/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth

100% [ /4 7v/44.7M [00:01<00:00, 161MB/s]

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:26: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include

————————————— visualize the images with predicted class names by ResNetl8 -------------
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Problem 4 (g) Interpret Result

Nheerve the nredirtinne nf different architertiiree and nravide vniir anewere far the fallnwina aneetinne:



Observe the predictions of different architectures and provide your answers for the following questions:

« List some predictions that are closely related to your labels or what are presented in the corresponding images. For example, AlexNet

predicts an image of a tiger as 'tiger', or VGG16 predicts an image of an giraffe as 'gazelle’.

= Some of the predictions are not related but have reasonable explanations. For example, Resnet18 predicts a giraffe as 'honeycomb'. Such
prediction is made because the fur pattern of a giraffe somehow looks alike the structure of honeycomb.

e The three architectures might have different predictions on the same images. For those cases, does a more complex model always

generate predictions that are more related?

" Problem 4 (g) Solution

2N eB DT

1. Predictions that are closely related to your labels: AlexNet and ResNet18 gets military plans, humming birds, missles, and Eagles correct;
VGG16 gets airliners, planes, missles, and eagles correct.

2. ResNet18 label a glider as bow since the glider in the picture has a "<" shape; AlexNet label a comic plane as ski since it is surrounded by
showy mountains; VGG16 labels humming birds as kite since it also got similar shape.

3. No, more complex model does NOT generate more accurate predictions.

v Problem 5-8 Setup Instructions

This is the first assignment you will encounter in the course that requires to work with a real world, image-based dataset. Since any variables
and data created inside a colab session gets deleted from memory when you step out of that session, we are going to work with personal drive
storage instead, especially since the dataset for this assignment is much larger in size than anything you will have seen thus far, and it can
potentially use a significant portion of your internet data and time to download this from scratch every time you start a new session. Please pay
careful attention to the instructions that follow, since they will greatly increase your convenience for this assignment.



1. Connecting to Google Drive
Ensure that you have atleast 5-6 GB of free storage space in your personal Gdrive. If not, it might be a good idea to set up a new google account
and work on the assignment there. Once you have this sorted out, connect your notebook session to your Gdrive space by clicking on the files

tab on the left of the screen, followed by the "Mount Drive" button, as shown in the image below:

X

Files

Q [}j Cé Step 2

[+ ]
» [ sample_data

Step 1

~ [2] from google.colab import drive
drive.mount('/content/drive")

Mounted at /content/drive

2. Changing Runtime session to "GPU type"
Since we are going to be training and running deep neural networks for this assignment, using GPUs would greatly speed up that process. On
the tab above, click on the Runtime button followed by "Change Runtime type". In the dialog box that opens up, change the hardware accelerator

type to GPU.

3. Setting up the directory structure and downloading the data



Having completed these steps, we are now going to run the cell below to set up the directory structure of the project and download the dataset
files. Please keep in mind that you need to run this cell exactly once throughout the time you will work on this assignment. This is because files
stored on your G-drive get stored permanently unlike normal colab sessions. Depending on the speed of your internet connection, the
downloading process can take anywhere from ten minutes to thirty minutes. Having successfully executed this cell, you should see a new
folder in your G-drive called ECE-48@3-Assignment-5-files having the following directory structure:

ECE-4883-Assignment-5-files

-data

| --test.zip

| --test.csv

|-
|
|
|
|
| | --train.zip
| | --train.csv
| --finetuned_models
|

--pretrained_models

[ 1 # Run this cell ***#*gnly the very first time**** tp execute this notebook

%cd /content/drive/MyDrive

%mkdir ECE-4803-Assignment-5-files
%cd ECE-4883-Assignment-5-files
¥mkdir data

%mkdir {data/train,data/test,pretrained_models,finetuned_models,results}

%cd data/train
lwget "https://zenodo.org/record/4299330/files/train.csv"
lwget "https://zenodo.org/record/4299338/files/train.zip”




E—)

%cd .. /test
lwget "https://zenodo.org/record/4299338/files/test.csv”
lwget "https://zenodo.org/record/4299338/files/test.zip"

/content/drive/MyDrive

/content/drive/MyDrive/ECE-48683-Assignment-5-files
/content/drive/MyDrive/ECE-4883-Assignment-5-files/data/train

--2022-084-01 13:44:43-- https://zenodo.org/record/4299330/files/train.csv
Resolving zenodo.org (zenodo.org)... 137.138.76.77

Connecting to zenodo.org (zenodo.org)|137.138.76.77|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 153396 (156K) [text/plain]

Saving to: ‘train.csv’

train.csv 108%[ >] 149.88K  28B8KB/s in 8.7s
2022-04-01 13:44:46 (208 KB/s) - ‘train.csv’ saved [153396/153396]

--2022-84-01 13:44:46-- https://zenodo.org/record/425933@/files/train.zip
Resolving zenodo.org (zenodo.org)... 137.138.76.77

Connecting to zenodo.org (zenodo.org)|137.138.76.77|:443... connected.
HTTP request sent, awaiting response... 288 0K

Length: 1883280293 (1.8G) [application/octet-stream]

Saving to: ‘train.zip’

train.zip 108%[ >] 1.75G 1.48MB/s in 9m 48s

2022-04-01 13:54:37 (3.85 MB/s) - ‘train.zip’ saved [18832008293/18832080293]

/content/drive/MyDrive/ECE-4883-Assignment-5-files/data/test

--2022-84-81 13:54:38-- https://zencdo.org/record/4299338/files/test.csv
Resolving zenodo.org (zenodo.org)... 137.138.76.77

Connecting to zenodo.org (zenodo.org)|137.138.76.77|:443... connected.
HTTP request sent, awaiting response... 280 OK

Length: 109526 (107K) [text/plain]

Saving to: ‘test.csv’?

NN T = [ « 19




test.csv 188%[ »] 1686.96K  232KB/s in B.5s

2022-94-01 13:54:41 (232 KB/s) - ‘test.csv’ saved [189526/109526]

--2022-84-01 13:54:41-- https://zencdo.org/record/4299336/files/test.zip
Resolving zenodo.org (zenodo.org)... 137.138.76.77

Connecting to zenodo.org (zenodo.org)|137.138.76.77|:443... connected.
HTTP request sent, awaiting response... 288 OK

Length: 1526714682 (1.4G) [application/octet-stream]

Saving to: ‘test.zip’

test.zip 188%[ »] 1.42G 4.71MB/s in 11m 14s

2922-84-01 14:05:57 (2.16 MB/s) - ‘test.zip’ saved [1526714682/1526714682]

d

T = - SIS |

~ Problem 5: Inspecting the CURE-OR Dataset

The dataset we are working with for the purposes of the next set of questions in this assignment is called "CURE-OR", standing for Challenging
Unreal and Real Environments for Object Recognition. The dataset was originally created to test the robustness of various off-the-shelf object
recognition algorithms to various types and levels of distortion found in real world scenarios. The complete details on this may be found in the
paper [link], the citation for which is as follows:

D. Temel, J. Lee, and G. AlRegib, "CURE-OR: Challenging unreal and real environments for object recognition,” 2818 17th IEEE International Confere

4 »

What we are actually using here is a smaller subset of the orginal dataset. For any machine learning task, familiarizing oneself with the data is
as important as setting up and training the machine learning model itself. The code cells below give a glimpse into the train.csv file you
downloaded earlier, as well as sample randomly and display five images for a given class from the train.zip file. As you may see from the
output of the train.csv file, each image in the train.zip has animage ID, a class, a background, a perspective, challenge type, and challenge
level. Execute the fourth code cell displaying randomly sampled images from train.zip @ number of times, and based off your observations






(as well as from what you can gather from reading the paper cited above and analyzing the csv file), answer the following questions:
(a) How many classes in total are contained within the train.zip file? What are the names of each of those classes?

(b) How many different backgrounds do you observe for the images in the train.zip file? What are those backgrounds?

(c) How many different camera perspectives (angles) have the pictures of the various objects in train.zip been taken?

(d) Describe some of the different kinds of noise types you can observe for the objects in train.zip . Please be concise and precise in your
answers.

~ [3] # run this cell every time you execute the notebook afresh after the first time
# setting up and define the data directories

import os

root = '/content/drive/MyDrive/ECE-4883-Assignment-5-files"'

train_directory = '/content/drive/My Drive/ECE-4883-Assignment-5-files/data/train’
test_directory = '/content/drive/My Drive/ECE-4883-Assignment-5-files/data/test’
os.chdir(root)

v [4] from google.colab import drive
drive.mount('/content/drive’)

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

~ [14] # inspect train.csv
os.chdir(root+' /data/train')

import pandas as pd



df = pd.read_csv('train.csv')

df.head()

imageID class background perspective challengeType challengelevel

0 0 1 1 1 1 0
1 1 2 1 1 1 0
2 2 3 1 1 1 0
3 3 = 1 1 1 0
4 - 5 1 1 1 0

v [15] # inspect training images in train.zip

import random
from zipfile import ZipFile
import shutil

import matplotlib.pyplot as plt
import matplotlib.image as mpimg

zipobj = ZipFile('train.zip')
file IDs = zipobj.namelist()[1:] # all fileIds in the folder

random.shuffle(file_IDs)
filenames = file IDs[:5]

with ZipFile('train.zip','r"') as zipObject:
for filename in filenames:
zipObject.extract(filename)



random.shuffle(file_IDs)
filenames = file IDs[:5]

with ZipFile('train.zip','r') as zipObject:
for filename in filenames:
zipObject.extract(filename)
fig, ax = plt.subplots(1,5, sharey=True, figsize=(20,4))
for filename,axis in zip(filenames, ax.flatten()):
img=mpimg.imread(filename)
axis.imshow(img)

plt.show()

shutil.rmtree('train')




Problem 5 (a) Solution

10 Class: Canon camera, Training marker cone, Baseball, Pan, Toy, LG Cell phone, Hair brush, DYMO Label maker, Calcium bottle, Shoes

Problem 5 (b) Solution

3 backgrounds: White, Texture 1 - living room, Texture 2 - kitchen

Problem 5 (c) Solution

5 perspectives: Front (0°), Left side (90°), Back (180 °), Right side (270°), Top

Problem 5 (d) Solution

Noises such as: Grayscale, resizing images, blurring images, under/over-exposure, and the combinations of them

ORI T = IV |

Creating the Train and Test Splits



The two code cells below extract randomly a given number of images for each object class from the train.zip and test.zip files to create
two additional file directories in the folder structure we set up earlier. After executing both of them, you should now observe the folder tree to
have a structure similar to that shown below:

ECE-4883-Assignment-5-files

|--test.zip

|

|

|

|

|

|

| |--test.csv
|

| |--train_imgs
||

I |-

||

I |--9
|--train.zip

|--train.csv

--finetuned_models

--pretrained_models

Each of the numbers 0,1,... denote a folder containing images extracted for that given class from the train.zip and test.zip files,
respectively. After executing the cells, manually browse through your G-drive to see for yourself the changes that happened to the original file
tree. These are the training and testing splits we are going to use for training and evaluating our models for this assignment.



[24] # create a training dataset (only run once!ll)

import os

import numpy as np

import random

from zipfile import ZipFile
import shutil

train_directory = '/content/drive/My Drive/ECE-4883-Assignment-5-files/data/train’
os.chdir(train_directory)

training_points_per_class = 15 # num of images per class

# create directory to store extracted training images
if not os.path.isdir('train_imgs'):
os.mkdir('train_imgs')
else:
pass

# dataframe of class labels and IDs

df = pd.read_csv('train.csv')
for i, class_num in enumerate(range(1, 11)):

train_file IDs = list(df.loc[df['class']==class_num]['imageID'].to_numpy()) # get all the image IDs for that class
train_file IDs = ['train/'+str(ID).zfill(5)+'.jpg"' for ID in train_file IDs] # convert IDs to string paths

# make directory for class

if not os.path.isdir('train_imgs/'+str(i)):
os.mkdir('train_imgs/"+str(i))

else:
pass

random.shuffle(train_file IDs)
filenames = train_file_IDs[:training_points_per_class]



C

(8]

with ZipFile('train.zip','r') as zipObject:
for filename in filenames:
zipObject.extract(filename)
shutil.move(filename, 'train_imgs/ '+str(i))

os.rmdir('train')

Error Traceback (most recent call last)
<ipython-input-24-2c@f12c04fd3> in <module>()

38 for filename in filenames:

39 zipObject.extract(filename)
---> 48 shutil.move(filename, 'train_imgs/'+str(i))

41

42 os.rmdir('train')

Jusr/lib/python3.7/shutil.py in move(src, dst, copy_function)

562 real dst = os.path.join(dst, _basename(src))
563 if os.path.exists(real_dst):
--» 564 raise Error("Destination path '%s' already exists" % real dst)
565 try:
566 os.rename(src, real dst)

Error: Destination path "train_imgs/8/85928.jpg' already exists

SEARCH STACK OVERFLOW

# create a directory of test images

import os
import numpy as np



import random
from zipfile import ZipFile
import shutil

test_directory = '/content/drive/My Drive/ECE-4883-Assignment-5-files/data/test’
os.chdir(test_directory)

test_points_per_class = 5 # num of test images per class

# create directory to store extracted test images
if not os.path.isdir('test_imgs'):
os.mkdir('test_imgs')
else:
pass

# dataframe of class labels and IDs
df = pd.read_csv('test.csv')

for i, class_num in enumerate(range(1, 11)):

# make directory for class

if not os.path.isdir('test_imgs/'+str(i)):
os.mkdir('test_imgs/'+str(i))

else:

pass

test_file IDs

random. shuffle(test_file IDs)
filenames = test_file IDs[:test_points_per_class]

with ZipFile('test.zip','r') as zipObject:
for filename in filenames:
zipObject.extract(filename)

N oo BSUJE

list(df.loc[df['class’']==class_num]['imageID'].to_numpy()) # get all the image IDs for that class
test_file IDs = ['test/'+str(ID).zfill(5)+'.jpg’' for ID in test file IDs] # convert IDs to string paths



shutil.move(filename, "test_imgs/'+str(i)) *v o8B %R Q [

os.rmdir('test')

~ Problem 6: Setting up the Dataloaders for CURE-OR

Here, we set up the dataloaders to load and present to the neural network images in the train and test splits respectively. Fill into the code cell
below at the places indicated to instantiate the dataloader objects.

Remember that our images are .jpz files, and they have to be preprocessed and conditioned appropriately before they can be processed by a
neural network. To be more specific, the following four operations have to be carried out (in the same order) before the image files can be
presented to the neural network model.

1. Resizing the images to 256 x 256 pixels.
2. Center cropping the images to to 224 x 224 pixels.
3. Converting the image to a torch tensor.

4. Normalizing the image channels (Red, Green, and blue) to have 0 means and 1 standard deviation, respectively. For the ImageNet dataset,
the means for the three channels are 0.485, 0.456, and 0.406, respectively while the standard deviations are 0.229, 0.224, and 0.225,
respectively. We use this statistics to normalize our CURE-OR dataset as well.

Note: pyterch provides handy tools for all of the above conversions/processes in the form of Resize, CenterCrop, ToTensor, and Normalize
classes, respectively within the torchvision.transforms module. Moreover, one may construct a single pipeline involving the serial application
of several processes using the very useful transforms.Compose class. Use these classes to construct a single pipeline called preprocess in the
code indicated below applying the above transformations in the order mentioned.

Afterwards, use the ImageFolder class inthe torchvision.datasets module to set up a dataset object for both training and testing. The two
options you need to specify while instantiating these obejcts is the path of the folder containing the class image folders and the transform



pipeline object (that you constructed above).

T Problem 6 Solution

v [25] # create a dataset and dataloader

import torch
from torchvision.datasets import ImageFolder

from torchvision import transforms

preprocess = transforms.Compose([transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, ©.456, 0.406],

std=[@.229, ©.224, 0.225])])

#H#TODO

# set up train loader
train_dataset = ImageFolder(root="/content/drive/My Drive/ECE-4883-Assignment-5-files/data/train” , transform=preprocess) ##T0DO
trainloader = torch.utils.data.Dataloader(train_dataset, batch_size=1, shuffle=True)

# set up test loader
test_dataset = ImageFolder(root='/content/drive/My Drive/ECE-4883-Assignment-5-files/data/test’ , transform=preprocess) ##TODO
testloader = torch.utils.data.Dataloader(test_dataset, batch_size=1, shuffle=True)

~ Problem 7: Setting up and Testing a Pretrained Neural Network Model on CURE-OR

Having constructed the dataloaders, we now move onto the neural network model itself. For this question, we are going to use the AlexNet



architecture, which you may remember as being the winner of the ImageNet 2012 competition. The first code cell below downloads the
pretrained weights of the AlexNet on the ImageNet dataset into the \content\drive\MyDrive\ECE-4803-Assignment-5-
files\pretrained_models directory. This code cell is to run only once throughout the time you work on this assignment.

We are going to test and see how well the pretrained Alexnet would perform on a dataset that it has not been trained on before. Remember that
a neural network only predicts numbers corresponding to classes. To extract the actual classnames, we need a dictionary mapping each of the
output integers to a class name. For the ImageNet dataset, we provide a python dictionary containing a mapping from the integers 0 — 999 to

one of the thousand classes the network was trained on. The dictionary may be downloaded by running the following snippet of code:

import os

os.chdir(root)

lgdown --id 1bDrtvgX-ztIh7A46FQNVROS7bEVUYogn

This downloads a file called 1abel_dict.pth tothe ECE-4803-Assignment-5-files folder in your Gdrive. To answer this question, fill in the
second and third code cells below as instructed.

(a) Import the 1abel_dict dictionary into the variable called label_map using the torch.load variable.
(b) Instantiate an object of alexnet class from the torchvision.models module.

(c) Load the pretrained weights you downloaded above into the model object you just instantiated using the model object's class function,
load_state_dict, and the torch.load function.

(d) Using the trainloader object you defined in Problem 5, load training images and present to the pretrained alexnet architecture. The output of
the final layer is a 1000 element vector. Use the index position for the highest activation value to extract the corresponding class label from the
label_map variable. This is then set as the fitle of the image. The places in the code you need to fill out have been indicated in the third code
cell below.

(e) Execute the third code cell multiple times. Based off your observations, do the network predictions make sense on all or some of the
obiects? Name some of these objects? For the obiects the network fails at some or most of the times. do the incorrect network predictions on



these have any significance in relation to the ground-truth class of those images?

(f) Explain some of the reasons why the network may be predicting very different classes to the ground-truths for some images.

[ 1 # Only download models once!

os.environ[ 'TORCH_HOME'] = "/content/drive/MyDrive/ECE-48B3-Assignment-5-files/pretrained_models/"

from torchvision import models

models.resnetl8(pretrained=True)
models.alexnet (pretrained=True)
models.vggl6(pretrained=True)

Downloading: "https://download.pytorch.org/models/resnet18-f37872fd.pth" to /content/drive/MyDrive/ECE-4883-Assignment-5-files/pretrained_models/hub/checkpoints/res: «

Downloading: "https://download.pytorch.org/models/alexnet-owt-7beSbe79.pth" to /content/drive/MyDrive/ECE-4883-Assignment-5-files/pretrained_models/hub/checkpoints/;

rocs N 21233V (00 0500 0, 41 315

Downloading: "https://download.pytorch.org/models/vggl6-397923af.pth" to /content/drive/MyDrive/ECE-4883-Assignment-5-files/pretrained_models/hub/checkpoints/vggl6-:

VGG(

(features): Sequential(

(8): Conv2d(3, 64, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

): RelU(inplace=True)
): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
): RelU(inplace=True)
(4): MaxPool2d(kernel size=2, stride=2, padding=@, dilation=1, ceil mode=False)

)

)

)

)

: Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

: RelU(inplace=True)

: Conv2d(128, 128, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

: RelU(inplace=True)

(9): MaxPool2d(kernel_size=2, stride=2, padding=©, dilation=1, ceil_mode=False)
(18): Conv2d(128, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

(11): ReLU(inplace=True)



[]

(11):
(12):
(13):
(14):
(15):
(16):
(17):
(18):
(19):
(20):
(21):
(22):
(23):
(24):
(25):
(26):
(27):
(28):
(29):
(3@):

)

RelLU{inplace=True)

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil mode=False)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

MaxPool2d(kernel_size=2, stride=2, padding=8, dilation=1, ceil_mode=False)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
RelU{inplace=True)

MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil mode=False)

(avgpool): AdaptivelvgPool2d(output_size=(7, 7))
(classifier): Sequential(

(9):
(1):
(2):
(3):
(4):
(3):
(6):

Linear(in_features=250888, out_features=4096, bias=True)
ReLU(inplace=True)

Dropout(p=0.5, inplace=False)

Linear(in_features=4096, out_features=4895, bias=True)
RelU(inplace=True)

Dropout(p=8.5, inplace=False)

Linear(in_features=4096, out_features=1608, bias=True)

# Only download dictionary once!
import os



os.chdir(root)
lgdown --id 1bDrtwvgX-ztIh7A46FQNVROSTBEVUYogn

Downloading. ..

From: https://drive.google.com/uc?id=1bDrtvgX-ztTh7A46FQNvROS7BEVUYoEn
To: fcontent/drive/MyDrive/ECE-4883-Assignment-5-files/label dict.pth
188% 33.1k/33.1k [P0:890<008:08, 45.8MB/s]

' Problem 7 (a)-(c) Solution

[ ] ## Problem 7 (a)-(c)
# load models and label dictionary

import torch

from torchvision.models import alexnet, resnetl8, vgglé
# load dictionary for alexnet labels

label map = torch.load("/content/drive/MyDrive/ECE-4803-Assignment-5-files/label dict.pth")##T0ODO

# instantiate model object and load pretrained model weights
model = alexnet(pretrained=True) ##TODO
model.load_state_dict(torch.load("/content/drive/MyDrive/ECE-4803-Assignment-5-files/pretrained_models/hub/checkpoints/alexnet-owt-7be5be79.pth") )#4T0DO

<All keys matched successfully>
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" Problem 7 (d) (e) Solution



Problem 7 (d) (e) Solution

° ## Problem 7 (d)(e)
# test pretrained model predictions on the train set
# import torch.nn.funtional as F

num_images = 5
model = model.to('cuda')

fig, ax = plt.subplots(l, num_images, sharey=True, figsize=(20,4))

with torch.no_grad():
for i in range(num_images):

img, _ = next(iter(trainloader))

img = img.to('cuda')

softmax = torch.nn.functional.log_softmax(img, dim = 1)

# print(img.size)

out = model(softmax) ##TODO

pred_label = label map.get(out.argmax(dim = 1).item())##T0ODO
img = img.detach().cpu().numpy().squeeze().transpose(1,2,0)
img = (img - img.min()) / (img.max() - img.min())

ax[i].imshow(img)
ax[i].set_title(pred_label)

plt.tight_
plt.show()

layout()
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matchstick

o binder, ring-binder binder, ring-binder ballplayer, baseball player goldfish, Carassius auratus

" Problem 7 (e) Solution

The network predictions make sense on some of the objects like brushes, and shoes. Yes, some of them have the same shape or color as the
label.

" Problem 7 (f) Solution

r*rNeoB /S PTG

Since the number of images that we are feeding the model is not enough. Also, some of the picture has a very low resolution and even | could
hardly identify them.



~ Problem 8: Training the Network from scratch on CURE-OR

As you may already have seen, the network predictions while making some sense on some images, appear to be completely off on others. We
are going to attemp to fix this problem by retraining the alexnet network from scratch on our training split. Fill in the code below at the places
indicated to train a randomly initialized alexnet network architecture on the training split we created earlier using the trainloader object
instantiated in Problem 6. Answer the question by following the instructions below.

(a) Randomly intialize an alexnet architecture

(b) Since the original alexnet has been trained on 1000 classes, but CURE-OR only contains 10 classes, change the last layer to have 10

neurons instead of 1000.

(c) Using the Adam optimizer, with a learning rate of 0.001, train the modified alexnet architecture for 100 epochs on the training split we

created earlier (using its trainloader object).

(d) It is now time to test the trained model. Before we do that, however, we need to construct a python dictionary to map the integer predictions
of the network (from 0 to 9) to each of the 10 classes present in CURE-OR. Using your answer to Problem 4 (a), define a dictionary called
label_map creating this relationship.

(e) Complete the inference code to randomly sample 5 images from the testing split and print the network predictions for them as their titles,
as in Problem 6 (d) above. Execute the second code cell multiple times. What do you observe in regards 1o the network predictions? Which
objects does the network consistently get right. Which ones does it fail more often at? If you observed a well performing network, why is that
the case? If not, why do you think the network failed to perform better?

Problem 8 (a)-(c) Solution

[ 1 ## Problem 8 (a)-(c)
# train model



TN o B R B

import torch.nn as nn

# define learning rate and number of training epochs
1r = 18e-4 ##TODO
epochs = 188 ##T0ODO

# intialize model and change last layer
model = alexnet{num_classes = 10) ##TODO # randomly intialize the model
model = model.to('cuda')

# define loss function
loss_function = nn.CrossEntropyloss() ##TODO

# set up optimizer with the specified learning rate
optimizer = torch.optim.SGD(model.parameters(), 1r = 1lr) ##TODO

for epoch in range(epochs):
for i, {x, y) in enumerate(trainloader):

model.train()
optimizer.zero_grad()

# extract input, obtain model output, loss, and backpropagate
#H#TODO

#ROSEM IS MISSING SOMTHING

# img, _ = next(iter(trainloader))

# img = img.to('cuda')

# inputs, _ = trainloader

out = model(x.to('cuda'))##TODO

loss_val = loss_function(out, y.to('cuda'))##TODO

loss wval.backward()



(]

optimizer.step()

print('Epoch:

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
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Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

11 | Loss:{:@.6f}".format(epoch, loss_val.item()))

1.968274
9.8088536
9.822757
8.882375
9.8089500
0.000087
9.000012
9.815060
9.811783
9.0089504
10.08905%4
0.800000
0.844120
0.800000
8. 000004
09.800001
0.800000
0.808758
9.825378
9.811238
0.800616
10.0822803
09.800054
09.000004
09.800037
0.801834
0.800000
0.800002
9.819840
9.854153
0.800000
09.800001
0.800000
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Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:

33
34
35
36
37
38
39
40
a1
42
43

45
46
a7
48
49
50
51
52
53
54
55
56
57

| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:
| Loss:

DD E OO0 600 0RO 000000000

. 00825
.00eBee
.032437
.00eBee
. 704785
.gveeal
.@30162
.00eBee
.00ea51
.00ea98
.00eBee
.041639
.00eBee
.00eBee
.585609
.00eBee
.001583
.00eBee
.035281
.0vea17
.00ee12
.002553
. 00825
.00eB66
.00eBee
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" Problem 8 (d)(e) Solution

[ 1 ## Problem 8 (d)(e)
# test trained model predictions on the training set

num_images

fig, ax =

=5

plt.subplots({1l,num images, sharey=True, figsize=(26,4))



label_map = torch.load("/content/drive/MyDrive/ECE-4803-Assignment-5-files/label dict.pth")
##TODO # define label map dictionary

with torch.no_grad():
for i in range(num_images):

##TODO

img, _ = next(iter(trainloader)) ##TODO # extract image from train loader
img = img.to('cuda')

logits = model(img) ##TODO

out = torch.nn.functional.log_softmax(logits)##TODO

pred_label = label map.get(out.argmax(dim = 1).item()) ##TODO # obtain predicted label
img = img.detach().cpu().numpy().squeeze().transpose(1,2,0)
img = (img - img.min()) / (img.max() - img.min())

ax[i].imshow(img)

ax[i].set_title(pred_label)

plt.tight_layout()
plt.show()

[» /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:18: UserWarning: Implicit dimension choice for log_softmax has been deprecated. Change the call to include
goldfish, Carassius auratus

goldfish, Carassius auratus goldfish, Carassius auratus goldfish, Carassius auratus

goldfish, Carassius auratus
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Problem 8 (e) Solution

The type of object with no noise or greyscale noise are constantly correct while the blurry ones constantly fail. With a well-performed network, |
think it is because blurry object is has a ambiguous shape and shape is a critical factor for predicting stuff. If we can improve the network,
maybe we can improve its ability on recognizing shapes or colors or some even more detailed features.

+~ 1s completed at 5:48 PM [ ]



