Georgia Institute of Technology
ECE 4803: Fundamentamentals of Machine Learning (FunML)
Spring 2022
Homework Assignment # 6

Due: Friday, April 15th, 2022 @8PM

Please read the following instructions carefully.

The entire homework assignment is to be completed on this ipython notebook. It is designed to be used with Google Colab, but you may
use other tools (e.g., Jupyter Lab) as well.

Make sure that you execute all cells in a way so their output is printed beneath the corresponding cell. Thus, after successfully executing
all cells properly, the resulting notebook has all the questions and your answers.

Print a PDF copy of the notebook with all its outputs printed and submit the PDF on Canvas under Assignments.

Make sure you delete any scratch cells before you export this document as a PDF. Do not change the order of the questions and do not
remove any part of the questions. Edit at the indicated places only.

Rename the PDF according to the format: LastName_FirstName_ECE_4803_sp22_assignment_#.pdf

It is encouraged for you to discuss homework problems amongst each other, but any copying is strictly prohibited and will be subject to
Georgia Tech Honor Code.

Late homework is not accepted unless arranged otherwise and in advance.

Comment on your codes.

Refer to the tutorial and the supplementary/reading materials that are posted on Canvas for lectures 20, 21 to help you with this
assignment.

IMPORTANT: Start your solution with a BOLD RED text that includes the words solution and the part of the problem you are working on.
For example, start your solution for Part (c) of Problem 2 by having the first line as:

Solution to Problem 2 Part (c). Failing to do so may result in a 20% penalty of the total grade.



Assignment Objectives:

« Understand the basic function and intuituion behind Autoencoders
« Understand the different modes of Autoencoders
« Understand regularization in Autoencoders

Guide for Exporting Ipython Notebook to PDF:

Here is a video summarizes how to export Ipythin Notebook into PDF.

s [Method1: Print to PDF]
After you run every cell and get their outputs, you can use [File] -> [Print] and then choose [Save as PDF] to export this Ipython Notebook
to PDF for submission.
Note: Sometimes figures or texts are splited into different pages. Try to tweak the layout by adding empty lines to avoid this effect as much
as you can.

* [Method2: colab-pdf script]
The author of that video provided an alternative method that can generate better layout PDF. However, it only works for Ipythin Notebook
without embedded images.
How to use: Put the script below into cells at the end of your Ipythin Notebook. After you run the fisrt cell, it will ask for google drive
permission. Executing the second cell will generate the PDF file in your google drive home directory. Make sure you use the correct path
and file name.

## this will link colab with your google drive
from google.colab import drive
drive.mount( ' /content/drive’)

F¥capture

lwget -nc https://raw.githubusercontent.com/brpy/colab-pdf/master/colab_pdf.py

from colab_pdf import colab_pdf

colab_pdf('LastMame_FirstMame_ECE_4883_sp22_ assignment_#.ipynb") ## change path and file name



» [Method3: GoFullPage Chrome Extension] (most recommended)
Install the extension and generate PDF file of the Ipython Notebook in the browser.

Note: Georgia Tech provides a student discount for Adobe Acrobat subscription. Further information can be found here.

Problem 1: MLP-based Autoencoders (35pts)

As we saw in the lecture, autoencoders (AEs) are machine learning models that learn to reconstruct their inputs. The aim in training
autoencoders is to learn and uncover important relationships underlying large dimensional datasets. In this and the following set of questions,
you will be asked to apply various kinds of autoencoders to the digits datasetin sklearn, a dataset consisting of images of handwritten
digits. The following piece of code loads the dataset and prints out images of various digits contained therein.

[ 1 # imports
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
import random

# load data
X, y = load_digits{return_X_y=True)

# print images of digits

fig, ax = plt.subplots(1,3)

for i in range(3):
idx = random.randint(@, X.shape[@]) # sample an example index
x_hat, y_hat = X[idx], y[idx] # extract data and label
ax[i].imshow(x_hat.reshape(8,8))
ax[i].set_title('Digit Label: {}'.format(str(y_hat)))

plt.show()
Digit Label: 7

Digit Label: 0 Digit Label: 3




In this question, we are going to design an MLP-based autoencoder to train on this dataset. Based off the particular characteristics of this
dataset and what you know of autoencoders, answer the following questions.

(a) What is the number of neurons that has to be in the input layer of this autoencoder?
(b) What is the number of output neurons that has to be in the output layer of this autoencoder?

(e) Using you answers to parts (a) and (b) above, design a pytorch class representing an MLP-based AE containing exactly one hidden layer
consisting of 5 neurons. The AE should not have any nondinear activation functions whatsoever. You may use the code cell below as a
template.

Problem 1 (a) Solution

MNumber of neurons in the input layer = 8%8 = 64

Problem 1 (b) Solution

Mumber of neurons in the output layer = 8%8 = 64

Problem 1 (c) Solution

[ 1 import torch
import torch.nn as nn
import torch.nn.functional as F

class MyMLPAE(nn.Module):
def  dinit (self. num hidden lavers. hidden size):



class MyMLPAE(nn.Module):
def _ init_ (self, num_hidden_layers, hidden_size):
super(MyMLPAE, self).  init_ ()

Inititalizes the various layers in the network

Parameters
num_hidden_layers : int
number of hidden layers

hidden_size : int
number of hidden neurons in the hidden layers

##TODO

# Hidden layers
# ENCODER
self.linear_1 = torch.nn.Linear(64, hidden_size)

# DECODER
self.linear_2 = torch.nn.Linear(hidden_size, &4)

def forward(self, x):
"""Processes the input from the dataloaders to return predicted output
probability vectors for each example in the batch.

Parameters

x : torch.tensor, shape(batch_size, 1, 64), dtype torch.float
output from dataloader containing batch_size number of flattened 8 x 8 images as
torch tensors

Returns

out : torch.tensor, shape (batch_size, 1, 64), dtype= torch.float.
batch_size number of flattened 8 x & images as torch tensors

#HTODO

x = self.linear 1(x) # the hidden state



° #ETODO

x = self.linear_1(x) # the hidden state

out = self.linear 2(x)

return out

(d) Design a pytorch dataset class to process and format examples from the digits dataset in an appropriate form to be presented the AE you
designed above for training and inference. Once again, you may use the code cell below as a template.

i Problem 1 (d) Solution

[ 1 from torch.utils.data import Dataset

class DigitsDataset(Dataset):
def _ init__ (self, X):

Function stores the data arrays returned by load_digits function.

Parameters

X : array_like, shape(Num_samples, Num_of features)
numpy array containing the data matrix containing digits training examples
and features.

#ETODO
zelf.X = X

def _ getitem_ (self, idx):
"""function extracts a single example from X given its index.

Parameters

index of a single example to be extracted from X

Returns



o input : torch.tensor, shape(l, 64), type torch.float
indexed example from X reshaped into a single channel grayscale image of
size 64 and float datatype.

FETODO

input = torch.tensor(self.X[idx])
input = input.type(torch.float)
input = torch.reshape(input, (1,64))
input = input.to('cuda')

return input

def _ len_ (self):
return self.X.shape[@]

(e) Finally, you are required to train your designed network on a train split created off from the original dataset and finally test the reconstruction
performance on the test split. You may use the following code cell as a template. After executing the cell, you should see printed both the
training and test set performance in terms of the mean square error reconstruction performance.

’ Problem 1 (e) Solution

[ 1 from sklearn.model selection import train_test_split
from torch.utils.data impert Dataloader

X _train, X_test, _, _ = train_test split(X, y, test size=0.5) # create train test split
train_loader = Dataloader(DigitsDataset(X_train), batch_size=X_ train.shape[@], shuffle=True) # train loader
test_loader = Dataloader(DigitsDataset(X_test), batch_size=X_test.shape[@], shuffle=True) # test loader

net = MyMLPAE(1, 58).to('cuda’) # initialize nework object

# optimizer and loss settings

optimizer = torch.optim.Adam(net.parameters(), lr=1le-3)
loss_fn = nn.MSELoss()

num epochs = 58



[ 1 # training loop
net.train()
for epech in range(num_epochs):
for x_train in train_loader:
net.zero_grad()

# present train example and compute loss
#HETODO
# optimizer.zero_grad()

x = x_train

# print(x_train)

x = x.to( 'cuda')

output = net(x)

loss = loss_fn(output, x)

# backpropagate and update network weights
##TODO

loss.backward()

optimizer.step()

print(‘Epoch: {} Train loss: {:0.4f}'.format(epoch, loss.item()))
fi==soss=ssssssosss Don't change anything below----------------—---——---#

# print training and test set performances

net.eval()

train_batch = next(iter(train_loader)) # train batch
test_batch = next(iter(test_loader)) # test batch

train_loss = loss_fn{net(train_batch), train_batch)
test_leoss = loss_fn(net(test_batch), test_batch)

print( \nTraining Loss: {:@.4f} | Test Loss: {:0.4f}'.format(train_loss.item(), test_loss.item(}))

# print loss on random data

random_data = torch.randn(89, 64).type(torch.fleat).to( cuda")
random_data_loss = loss_fn{net(random data), random_data)

print(‘\nLoss on random data: {:8.4f}'.format(random_data_loss.item()))

Epoch: @ | Train loss: 1.1214
Epoch: 1 | Train loss: 1.8711
Fpoch: 2 | Train ln=s: 1.8755
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Epoch: 49 | Train loss: ©.2941
Training Loss: 8.28%94 | Test Loss: 8.2987

Loss on random data: @.987@

(f) Now repeat the above experiment by varying the number of neurons in the hidden layer from 5 to 20, 40, 80, 100, and 200, respectively.
Produce plots showing both the training and test set performances as you change the hidden layer size. What do you observe? What explains

this observation?

(g) Now generate a batch 50 examples of random data (use torch.randn for this purpose) and for each AE generated in part (f), compute the
network’s reconstruction performance on this data (remember the network is still trained only on Digits data as before). Produce a plot showing
how the error on this varies as you change the number of neurons. What do you observe? Explain your observation.

" Problem 1 (f) (g) Solution

» Inthe plot, | see that the loss decreases as the number of neurons in the hidden layer increase. This is as expected since the expand of
neural networks and parameters improve the performance.

The result of the random data follows the same trend as the traning/testing plot in Part (f). This indicate that the code is not really
learning anything and it might be due to the identical mapping. The outputs directly ise the inputs without learning it.

[ 1 from sklearn.model_selection import train_test_split
from torch.utils.data import Dataloader
import matplotlib.pyplot as plt

X_train, X_test, _, _ = train_test_split(X, y, test_size=0.5) # create train test split
train_loader = Dataloader(DigitsDataset(X_train), batch_size=X_train.shape[@], shuffle=True) # train loader
test_loader = Dataloader(DigitsDataset(X_test), batch_size=X test.shape[@], shuffle=True) # test loader

num_hidden layer = [5, 2@, 48, 30, 100, 260]
train_loss_arr = []
test_loss_arr = []
1

rand_data_arr =



[1] for ii in num_hidden_layer:
# print(ii)
net = MyMLPAE(1, ii).to('cuda') # initialize nework object

# optimizer and loss settings

optimizer = torch.optim.Adam{net.parameters(), lr=le-3)
loss_fn = nn.MSELoss()

num_epochs = 5@

# num_epochs = ii

# training loop
net.train()
for epoch in range(num_epochs):
for x_train in train_loader
net.zero grad()

X = x_train
x = x.to("cuda’)

output = net(x)
loss = loss_fn(output, x)

# backpropagate and update network weights
#HTODO

loss.backward()

optimizer.step()

# print('Epoch: {} | Train loss: {:@.4f}'.format(epoch, loss.item()))

#-----------------Don"t change anything below----------------—---—————- #

# print training and test set performances

net.eval()

train_batch = next(iter(train_loader)) # train batch

test_batch = next(iter(test_loader)) # test batch

train_loss = loss_fn(net(train_batch), train_batch)

test_loss = loss_fn(net({test_batch), test_batch)

train_loss_arr.append(train_loss.item())

test_loss_arr.append(test_loss.item())

# print loss on random data



random_data = torch.randn(5¥, b4).type(torch.tloat).to( cuda”)
° random_data_loss = loss_fn(net(random_data), random_data)

rand_data_arr.append(random_data_loss.item())
# print(‘\nLoss on random data: {:8.4f}'.format(random data_loss.item()))

# print(train_loss_arr)

# print(test_loss_arr)

plt.plot(num_hidden_layer, train_loss_arr, label="training_error™)
plt.plot(num_hidden_layer, test_loss_arr, label="test_error")
# Add Title

plt.title("Loss vs Number of neurons in the hidden layer™)

# Add Axes Labels

plt.xlabel("Number of neurons in the hidden layer")
plt.ylabel("Loss")

plt.legend()

plt.show()
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[ 1 plt.plot{num_hidden_layer, rand_data_arr)



[ 1 # Add Title
plt.title("Random Data Loss vs Number of neurons in the hidden layer™)
# Add Axes Labels
plt.xlabel("Number of neurons in the hidden layer")
plt.ylabel("Loss")
# plt.legend()
plt.show()
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~ Problem 2: Convolutional Autoencoders (35pts)

In the lecture on AEs, we learned about convolutional autoencoders (CAEs) are better suited to tasks involving images where the data is
spatially structured. Since digits is a dataset of images containing handwritten digits, it may also be used CAEs. Answer the following
questions.

(a) Design a CAE with one hidden layer containing a single 3 x 3 kernel and no non-linear activations. Use appropriate padding to retain the
input image size. You may use the code cell below as a template.

Problem 2 (a) Solution

[ 1 class MyCAE(nn.Module):
def _ init_ (self, num_kernels):



[1]

class MyCAE(nn.Module):

def

def

__init_ (self, num_kernels):
super(MyCAE, self)._ init_ ()
"""Inititalizes the various layers in the network

Parameters
num_kernels : int
size of the kernel in the hidden layers

#Encoder
self.convl = nn.Conv2d(1l, num_kernels, 3, padding=1)

H#HTODO
self.conv2 = nn.Conv2d(num_kernels, 1, 3 , padding=1)

forward(self, x):
"""Processes the input from the dataloaders te return predicted output
probability vectors for each example in the batch.

Parameters

x : torch.tensor, shape(batch_size, 1, 8, 8), dtype torch.float
output from dataloader containing batch_size number of 8 x 8 images as
torch tensors

Returns

out : torch.tensor, shape (batch_size, 1, 8, 8), dtype= torch.fleat.
batch_size number of 8 x 8 images as torch tensors

H#HTODO

x = self.convl(x)

x = self.conv2(x)

out = x

return out



(b) Now design a dataloader to appropriately format examples from the Digits dataset to present to the CAE you designed above for training
and inference. You may use the code cell below as a template.

" Problem 2 (b) Solution

° class DigitsDataset(Dataset):
def _ init_ (self, X):
"""Function stores the data arrays returned by load_digits function.

Parameters

X : array_like, shape(MNum_samples, Num_of_features)
numpy array containing the data matrix containing digits training examples
and features.

FHTODO
self.X = X

def _ getitem_ (self, idx):
function extracts a single example from X given its index.

Parameters

index of a single example to be extracted from X

Returns

input : torch.tensor, shape(1l, 8, 8), type torch.float
indexed example from X reshaped into a single channel grayscale image of
size 8 x 8 and float datatype.

HHTODO

input = torch.tensor(self.X[idx])
input = input.type(torch.float)



input = torch.reshape(input, (1,8, 8))
input = input.to('cuda’)

return input

def _ len_ (self):
return self.X.shape[@]

(¢) Run training as before with MLP-based AE, followed by inference to gauge training and test performance.

" Problem 2 (c) Solution

[ 1 X train, X test, _, _ = train_test_split(X, y, test_size=8.5) # create train test split
train_loader = Dataloader(DigitsDataset(X_train), batch_size=X_train.shape[@], shuffle=True) # train loader
test_leoader = Dataloader(DigitsDataset(X_test), batch_size=X_test.shape[@], shuffle=True) # test loader

#-----------------Don't change anything above-----------—----——-—————- #
net = MyCAE(8@).to('cuda’) # initialize nework object

# optimizer and loss settings

optimizer = torch.optim.Adam(net.parameters(), lr=1es-3)
loss_fn = nn.MSELoss()

num_epochs = 5@

# training loop
net.train()
for epech in range(num_epochs):
for x_train in train_loader:
net.zere_grad()

# present train example and compute loss
#4TODO

x = x_train

# print(x_train)

x = x.to('cuda')

output = net(x)

loss = loss_fn(output, x)



# backpropagate and update network weights
HHTODO

loss.backward()

optimizer.step()

print(‘'Epoch: {} Train loss: {:8.4f}'.format(epoch, loss.item()))
$#-----------------Don"t change anything below---------------——-—————- #

# print training and test set performances

net.eval()

train_batch = next(iter(train_loader)) # train batch
test_batch = next(iter(test_loader)) # test batch

train_loss = loss_fn(net(train_batch), train_batch)
test_loss = loss_fn(net(test_batch), test_batch)

print{ \nTraining Loss: {:8.4f} | Test Loss: {:0.4f} .format(train_loss.item(), test_loss.item()))

# print loss on random data

random_data = torch.randn(5@, 1, 8, 8).type(torch.float).to( cuda’)
random_data_loss = loss_fn(net(random_data), random_data)

print(‘\nLoss on random data: {:8.4f}'.format(random_data_loss.item()))

Epoch: @ | Train loss: 32.8404
Epoch: 1 | Train loss: 28.9411
Epoch: 2 | Train loss: 16.@86@
Epoch: 3 | Train loss: 14.8@63
Epoch: 4 | Train loss: 13.5976
Epoch: 5 | Train loss: 11.3842
Epoch: & | Train loss: 8.61384

Epoch: 7 | Train loss: £.220§

Epoch: 8 | Train loss: 4.7431

Epoch: & | Train loss: 4.2414

Epoch: 18 | Train loss: 4.3135
Epoch: 11 | Train loss: 4.413%2
Epoch: 12 | Train loss: 4.2329
Epoch: 13 | Train loss: 3.7&83@
Epoch: 14 | Train loss: 3.2328
Epoch: 15 | Train loss: 2.8849
Epoch: 16 | Train loss: 2.8299
Epoch: 17 | Train loss: 2.59947
Epoch: 18 | Train loss: 3.1858
Epoch: 1% | Train loss: 3.2218
Epoch: 2@ | Train loss: 3.8391
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(d) Vary the number of learnable kernels in the hidden layer from 1 to 5, 20, 40, 80, 200. Produce plots showing how the network performs for
each setting on both training and test data. Compare these to what you obtained in Problem 1 (f). What do you observe? Explain your

observation.

" Problem 2 (d) Solution

+ Code — + Text




" Problem 2 (d) Solution

« Inthe plot, again, | see that the loss decreases as the number of neurons in the hidden layer increase, which is the same as the plot using
MLP-based autoencoder. This is as expected since the expand of neural networks and parameters improve the performance.

Comparing to problem 1, | see the image from problem 2 has less loss since the latent space is not linear.

from sklearn.model_selection import train_test_split
from torch.utils.data import Dataloader
import matplotlib.pyplot as plt

X_train, X _test, _, _ = train_test_split(X, y, test_size=8.5) # create train test split
train_loader = Dataloader{DigitsDataset(X_train), batch_size=X_train.shape[@], shuffle=True) # train loader
test loader = Dataloader(DigitsDataset(X _test), batch_size=X test.shape[@], shuffle=True) # test loader

num_hidden_layer = [1, 5, 28, 4@, 8@, lee, 20@]
train_loss_arr = []
test_loss_arr = []

for ii in num_hidden_layer:
# print(ii)
net = MyMLPAE(1l, ii).to('cuda') # initialize nework object

# optimizer and loss settings

optimizer = torch.optim.Adam(net.parameters(), lr=le-3)
loss_fn = nn.MSELoss()

num_epochs = 5@

# num_epochs = ii

# training loop
net.train()
for epoch in range(num_epochs):
for x_train in train_loader:
net.zero_grad()

x = x_train
x = ®x.to("cuda')
output = net(x)



loss = loss_fn(output, x)

# backpropagate and update network weights
#HTODO

loss.backward()

optimizer.step()

# print('Epoch: {} | Train loss: {:@.4f}'.format{epoch, loss.item(}))
#-----------------Don"t change anything below-------------------——-—- #

# print training and test set performances

net.eval()

train_batch = next(iter(train_loader)) # train batch
test_batch = next(iter(test_loader)) # test batch

train_loss = loss_fn(net(train_batch), train_batch)
test_loss = loss_fn{net(test_batch), test_batch)

train_loss_arr.append(train_loss.item())
test_loss_arr.append(test_loss.item())

# print(train_loss_arr)
# print(test_loss_arr)

plt.plot(num_hidden_layer, train_loss_arr, label="training_error™)
plt.plot(num_hidden_layer, test_loss_arr, label="test_error™)

# Add Title

plt.title("Loss vs Number of neurons in the hidden layer™)

# Add Axes Labels

plt.xlabel("Number of neurons in the hidden layer™)
plt.ylabel("Loss")

plt.legend()

plt.show()
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- Problem 3: Regularizing Autoencoders for Anomaly Detection (30pts)

We are now hopefully familiar with several intuitive properties of AEs. As you can probably tell, the reconstruction performance on AEs is
seldom the goal in and of itself.

An important application of AEs are used is anomaly detection, where an AE is trained on data of one kind or class and afterwards used to
detect (during inference) data from class(es) not used during training. This is an important application that assumes the AFE has leanrt the
underlying manifold structure of the data and can predict anomalous/out-of-distribution samples therefrom without access to any labels
whatsoever.

A necessary corrolary from the fact is that the AE should reconstruct all samples from the in-distribution/training classes well (low MSE) but
perform poorly at reconstructing anomalous/out-of-distribution class samples (high MSE). Below, we provide you template code that uses your
MLP AE above for the purposes of identifying which samples from the digits dataset do not correspond to a given training class (here
selected to be all images of the digit 2). After the procedure is run, we show the distribution of AE's reconstruction scores for both in-class and
out-of-class samples.

(a) Plug in your MLP based AE from above into the code snippet below and execute. Use a single hidden layer of size 40.
(b) What observations do you make with the distribution plot? Explain your observations.

(e) What would an ideal reconstruction score distribution plot look like?



" Problem 3 (a) (b) Solution

° in_dist_class = 2 # in distribution class

# load data
X, y = load digits(return_X_y=True)
X = (X - X.mean(}) / X.std()
X_train = X[ in_dist_class]
X_test = X[y!

# load to torch and cuda
X_train = torch.from_numpy(X_train).type(torch.float).to( cuda’)
X_test = torch.from_numpy(X_test).type(torch.float).to( 'cuda’)

#initialize network and other training parameters

net = MyMLPAE(1, 42).to('cuda’) ##TODOD

loss_fn = nn.MSELoss()

optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
num_epochs = 5@

# run training

net.train()

for epoch in range(num_epochs):
net.zero_grad()
#HTODO

print(*Epoch: {} | Training Loss: {:@.4f}'.format(epoch, loss.item(}))

# visualize score distributions for in-class and out-of-class samples
net.eval()

loss_fn = nn.MSELoss(reduction="none")

reconstruction_train = loss_fn(net(X_train), X _train).detach().cpu().numpy()
reconstruction_test = loss_fn{net(X_test), X test).detach().cpu().numpy()

plt.hist(reconstruction_train.flatten(), color="r", label="training scores')
plt.hist(reconstruction_test.flatten(), color='b', alpha=8.5, label="test scores')
plt.xlabel{ "reconstruction scores')

plt.legend()

plt.show()
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Problem 3 (b) (c) Solution

(b) | see the training and test scores lie mostly on the left, which means both of them are low. This shows that the AE algorithm is not good at
anomaly detection

(c) Ideally, the testing loss should be high since the algorithm never seen those input before, and thus the reconstruction should not be
accurate. The training loss should also be low because the algorithm studied them already and the result should be more accurate.

As you most likely observed, the AE above wasn't really good enough to be an effective anomaly detector for this application. What we need is
something called regularization to make our AE learn to discriminate better between in-class and out-class samples. To be a good anomaly
detector, an AE must (1) learn the manifold struture of in-distribution class really well and (2) prevent itself from devolving into a simple identity
function.

These are competing objectives and and the design of an AE must ideally strike the ideal balance between them. Regularization in AEs can take
various forms, from restrivting the learning capacity of the AE, to imposing Dropout and prevent neuron co-adaptation, to using L2 regularization
to prevent the weights from becomimg too large.

(d) In the cell below, design a regularized AE and rerun the code cell above with this new model. Are you able to acheive a better separation
between in- and out-of-distribution samples as before? For full credit, thoroughly describe and explain the changes you made to the
autoencoder to get a better separation.



Problem 3 (d) Solution

[ 1 class MyRegAE(nn.Module):
def _ init (self, num_hidden_layers, hidden size):

Inititalizes the various layers in the network

Parameters
num_hidden_layers : int
number of hidden layers.

hidden_size : int
number of hidden neurons in the hidden layers

super (MyRegAE, self)._ init_ ()
#HTODO

# ENCODER
self.linear_1 = torch.nn.linear(64, hidden_size)

# DECODER
self.linear_2 = torch.nn.Linear(hidden_size, &4)

def forward(self, x):

Processes the input from the dataloaders to return predicted output
probability vectors for each example in the batch.

Parameters

x : torch.tensor, shape(batch_size, 1, 64), dtype torch.float
output from dataloader containing batch_size number of flattened 8 x 8 images as
torch tensors

Returns

out : terch.tensor, shape (batch_size, 1, 64), dtype= torch.float.
batch_size number of flattened 8 x 8 images as torch tensors

#HTODO

x = self.linear_1(x) # the hidden state



out = self.linear_2(x)

return out, z

° in_dist_class = 2 # in distribution class

# load data

X, y = load_digits(return_X_y=True)
X = (X - Xomean()) / X.std()
X_train = X[y==in_dist_class]
X_test = X[y!=in_dist_class]

# load to torch and cuda
X_train = torch.from_numpy(X_train).type(torch.float).to( cuda")
X_test = torch.from_numpy(X_test).type(torch.float).to( cuda")

#initialize network and other training parameters

net = MyRegAE(1l, 48).to( cuda’) ##TODOD

loss_fn = nn.MSELoss()

loss_fn_L1 = nn.L1lLoss()

optimizer = torch.optim.Adam(net.parameters(), lr=1e-3, weight_decay=2.5)
num_epochs = 188

# run training

net.train()

for epoch in range(num_epochs):
net.zero_grad()

for x_train in train_loader:
net.zero_grad()

# present train example and compute loss
H#HTODO
# optimizer.zero_grad()

x = x_train

# print(x_train)
x = x.to{'cuda")
output,z = net(x)



loss_1 = loss_fn_L1(z, torch.zeros_like(z))
loss = loss_fn({output, x)

12_lambda = @.201
# 12 norm = sum(torch.linalg.norm(p, 2) for p in net.parameters())

loss = loss + loss_1

# backpropagate and update network weights
#HTODO

loss.backward()

optimizer.step()

print('Epoch: {} | Training Loss: {:@.4f}'.format(epoch, loss.item(}))

# visualize score distributions for in-class and out-of-class samples
net.eval()

loss_fn = nn.MSELoss({reduction="none")

reconstruction_train = loss_fn({net(X_train)[@], X_train).detach().cpu().numpy()
reconstruction_test = loss_fn(net(X_test)[@], X_test).detach().cpu().numpy()
plt.hist(reconstruction_train.flatten(), color="r", label="training scores')
plt.hist(reconstruction_test.flatten(), coler='b', alpha=8.5, label="test scores')
plt.xlabel( " reconstruction scores')

plt.legend()

plt.show()
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Epoch: 15 | Training Loss: 1.3135
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° Epoch: 79 | Training Loss: 1.8545
Epoch: 88 | Training Loss: 1.8525
Epoch: 81 | Training Loss: 1.8586
Epoch: 82 | Training Loss: 1.8487
Epoch: 83 | Training Loss: 1.8469
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" Problem 3 (d) Solution

| did achieve a better sepataion between in and out-of-distribution samples as before. | used L1 regulization in my algorithm on the Z layer. The
results is as expected since the error get larger(the spike shift right) since we are only feeding one digit (2) to the algorithm.



